如圖所示,已知四邊形ABCD是長(zhǎng)方形,分別用整式表示出圖中S1、S2、S3、S4的面積,并表示出長(zhǎng)方形ABCD的面積.
分析:分別根據(jù)長(zhǎng)方形的面積公式列式計(jì)算即可得解;再根據(jù)長(zhǎng)方形ABCD的面積等于四部分的面積的和計(jì)算即可得解.
解答:解:S1=m(2m-n)=2m2-mn,
S2=n(2m-n)=2mn-n2,
S3=n2,
S4=mn,
S長(zhǎng)方形ABCD=S1+S2+S3+S4
=(2m2-mn)+(2mn-n2)+n2+mn
=2m2-mn+2mn-n2+n2+mn
=2m2+2mn.
點(diǎn)評(píng):本題考查了列代數(shù)式,整式的加減,仔細(xì)觀察圖形并熟記長(zhǎng)方形的面積公式是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

53、如圖所示,已知四邊形ABCD是平行四邊形,在AB的延長(zhǎng)線上截取BE=AB,BF=BD,連接CE,DF,相交于點(diǎn)M.求證:CD=CM.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•廈門(mén))如圖所示,已知四邊形OABC是菱形,∠O=60°,點(diǎn)M是邊OA的中點(diǎn),以點(diǎn)O為圓心,r為半徑作⊙O分別交OA,OC于點(diǎn)D,E,連接BM.若BM=
7
,
DE
的長(zhǎng)是
3
π
3
.求證:直線BC與⊙O相切.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,已知四邊形OABC是菱形,∠O=60°,點(diǎn)M是邊OA的中點(diǎn),以點(diǎn)O為圓心,r為半徑作⊙O分別交OA,OC于點(diǎn)D,E,連接BM.若BM=
7
,
DE
的長(zhǎng)是
3
π
3

(1)求⊙O的半徑;
(2)直線BC與⊙O是否相切?若不相切說(shuō)明理由,若相切給予證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,已知四邊形ABCD的四個(gè)頂點(diǎn)都在⊙O上,∠BCD=120°,則∠B0D=
120°
120°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,已知四邊形ABCD是等腰梯形,DC∥AB,若AD=BC=5,CD=2,AB=8,求梯形ABCD的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案