【題目】隨著車輛的增加,交通違規(guī)的現(xiàn)象越來越嚴(yán)重,交警對(duì)人民路某雷達(dá)測速區(qū)檢測到的一組汽車的時(shí)速數(shù)據(jù)進(jìn)行整理(速度在30﹣40含起點(diǎn)值30,不含終點(diǎn)值40),得到其頻數(shù)及頻率如表:
數(shù)據(jù)段 | 頻數(shù) | 頻率 |
30﹣40 | 10 | 0.05 |
40﹣50 | 36 | c |
50﹣60 | a | 0.39 |
60﹣70 | b | d |
70﹣80 | 20 | 0.10 |
總計(jì) | 200 | 1 |
(1)表中a、b、c、d分別為:a= ; b= ; c= ; d=
(2)補(bǔ)全頻數(shù)分布直方圖;
(3)如果汽車時(shí)速不低于60千米即為違章,則違章車輛共有多少輛?
【答案】(1)78;56;0.18;0.28;(2)見解析;(3)違章車輛共有76(輛).
【解析】
(1)根據(jù)第一組的頻數(shù)是10,對(duì)應(yīng)的頻率是0.05即可求得整理的車輛總數(shù),然后根據(jù)百分比的意義求解;
(2)根據(jù)(1)的結(jié)果即可補(bǔ)全直方圖;
(3)求得最后兩組的和即可.
(1)整理的車輛總數(shù)是:10÷0.05=200(輛),則a=200×0.39=78,c0.18;
d=1﹣0.18﹣0.39﹣0.10=0.28,b=200×0.28=56.
故答案為:78;56;0.18;0.28;
(2)如圖:
;
(3)違章車輛共有56+20=76(輛).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,∠A=∠ABC=90°,AD=1,BC=3,點(diǎn)E是邊CD的中點(diǎn),連接BE并延長交AD的延長線于點(diǎn)F,連接CF.
(1)求證:四邊形BDFC是平行四邊形;
(2)若CB=CD,求四邊形BDFC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場服裝部為了調(diào)動(dòng)營業(yè)員的積極性,決定實(shí)行目標(biāo)管理,根據(jù)目標(biāo)完成的情況對(duì)營業(yè)員進(jìn)行適當(dāng)?shù)莫?jiǎng)勵(lì).為了確定一個(gè)適當(dāng)?shù)脑落N售目標(biāo),商場服裝部統(tǒng)計(jì)了每位營業(yè)員在某月的銷售額(單位:萬元),數(shù)據(jù)如下:
17 | 18 | 16 | 13 | 24 | 15 | 28 | 26 | 18 | 19 |
22 | 17 | 16 | 19 | 32 | 30 | 16 | 14 | 15 | 26 |
15 | 32 | 23 | 17 | 15 | 15 | 28 | 28 | 16 | 19 |
對(duì)這30個(gè)數(shù)據(jù)按組距3進(jìn)行分組,并整理、描述和分析如下.
頻數(shù)分布表
組別 | 一 | 二 | 三 | 四 | 五 | 六 | 七 |
銷售額 | |||||||
頻數(shù) | 7 | 9 | 3 | 2 | 2 |
數(shù)據(jù)分析表
平均數(shù) | 眾數(shù) | 中位數(shù) |
20.3 | 18 |
請(qǐng)根據(jù)以上信息解答下列問題:
(1)填空:a= ,b= ,c= ;
(2)若將月銷售額不低于25萬元確定為銷售目標(biāo),則有 位營業(yè)員獲得獎(jiǎng)勵(lì);
(3)若想讓一半左右的營業(yè)員都能達(dá)到銷售目標(biāo),你認(rèn)為月銷售額定為多少合適?說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在一個(gè)長方形操場的四角都設(shè)計(jì)一塊半徑相同的四分之一圓形的花壇,若圓形的半徑為r米,廣場的長為a米,寬為b米.
(1)請(qǐng)列式表示操場空地的面積;
(2)若休閑廣場的長為 50米,寬為20米,圓形花壇的半徑為 3米,求操場空地的面積.(π取 3.14,計(jì)算結(jié)果保留 0.1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,雙曲線經(jīng)過四邊形OABC的頂點(diǎn)A、C,∠ABC=90°,OC平分OA與x軸正半軸的夾角,AB∥x軸,將△ABC沿AC翻折后得到△AB'C,B'點(diǎn)落在OA上,則四邊形OABC的面積是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】以四邊形ABCD的邊AB、BC、CD、DA為斜邊分別向外側(cè)作等腰直角三角形,直角頂點(diǎn)分別為E、F、G、H,順次連接這四個(gè)點(diǎn),得四邊形EFGH.
(1)如圖1,當(dāng)四邊形ABCD為正方形時(shí),我們發(fā)現(xiàn)四邊形EFGH是正方形;如圖2,當(dāng)四邊形ABCD為矩形時(shí),請(qǐng)判斷:四邊形EFGH的形狀(不要求證明);
(2)如圖3,當(dāng)四邊形ABCD為一般平行四邊形時(shí),設(shè)∠ADC=α(0°<α<90°),
①試用含α的代數(shù)式表示∠HAE;
②求證:HE=HG;
③四邊形EFGH是什么四邊形?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面是小東設(shè)計(jì)的“作平行四邊形,使,,”的作圖過程.
作法:如圖,①作;
②在的兩邊上分別截取,;
③以點(diǎn)為圓心,長為半徑畫弧,以點(diǎn)為圓心,長為半徑畫弧,兩弧相交于點(diǎn);
④連接,.
則四邊形為所求作的平行四邊形.
根據(jù)小東設(shè)計(jì)的作圖過程:
(1)使用直尺和圓規(guī),補(bǔ)全圖形;(保留作圖痕跡)
(2)完成下面的證明.
證明: ______,______,
四邊形是平行四邊形.(______)(填推理的依據(jù)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為深化義務(wù)教育課程改革,滿足學(xué)生的個(gè)性化學(xué)習(xí)需求,某校就“學(xué)生對(duì)知識(shí)拓展,體育特長、藝術(shù)特長和實(shí)踐活動(dòng)四類選課意向”進(jìn)行了抽樣調(diào)查(每人選報(bào)一類),繪制了如圖所示的兩幅統(tǒng)計(jì)圖(不完整),請(qǐng)根據(jù)圖中信息,解答下列問題:
(1)求扇形統(tǒng)計(jì)圖中m的值,并補(bǔ)全條形統(tǒng)計(jì)圖;
(2)在被調(diào)查的學(xué)生中,隨機(jī)抽一人,抽到選“體育特長類”或“藝術(shù)特長類”的學(xué)生的概率是多少?
(3)已知該校有800名學(xué)生,計(jì)劃開設(shè)“實(shí)踐活動(dòng)類”課程每班安排20人,問學(xué)校開設(shè)多少個(gè)“實(shí)踐活動(dòng)類”課程的班級(jí)比較合理?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形 ABCD 中,AB=4,點(diǎn) E為邊AD上一動(dòng)點(diǎn),連接 CE,以 CE為邊,作正方形CEFG(點(diǎn)D、F在CE所在直線的同側(cè)),H為CD中點(diǎn),連接 FH.
(1)如圖 1,連接BE,BH,若四邊形 BEFH 為平行四邊形,求四邊形 BEFH 的周長;
(2)如圖 2,連接 EH,若 AE=1,求△EHF 的面積;
(3)直接寫出點(diǎn)E在運(yùn)動(dòng)過程中,HF的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com