精英家教網 > 初中數學 > 題目詳情
(2007•濰坊)如圖1,線段PB過圓心O,交圓O于A,B兩點,PC切圓O于點C,作AD⊥PC,垂足為D,連接AC,BC.
(1)寫出圖1中所有相等的角(直角除外),并給出證明;
(2)若圖1中的切線PC變?yōu)閳D2中割線PCE的情形,PCE與圓O交于C,E兩點,AE與BC交于點M,AD⊥PE,寫出圖2中相等的角(寫出三組即可,直角除外);
(3)在圖2中,證明:AD•AB=AC•AE.

【答案】分析:(1)根據弦切角定理得到∠ACD=∠ABC;根據等角的余角相等得到∠BAC=∠CAD;
(2)根據同弧所對的圓周角相等和圓內接四邊形的性質得到相關的角相等;
(3)證△ADC∽△AEB,從而得出所求的結論.
解答:證明:(1)圖1中相等的角有:∠ACD=∠ABC,∠BAC=∠CAD,
連接OC,則OC⊥PC,
∵AD⊥PC,
∴AD∥OC.
∴∠CAD=∠OCA.
又OA=OC,∠BAC=∠OCA,
∴∠BAC=∠CAD.
又AB為直徑,∠ACB=90°,
∴∠BAC+∠B=90°
∵∠CAD+∠ACD=90°,
∴∠ACD=∠ABC.

(2)∠ACD=∠ABE,∠ABC=∠AEC,∠BAE=∠BCE,∠CBE=∠CAE(三組即可);

(3)由(2)知:∠ACD=∠ABE,
又∵∠ADC=∠AEB=90°,
∴△ADC∽△AEB.
,即AD•AB=AC•AE.
點評:此題綜合考查了圓周角定理的推論、弦切角定理、圓內接四邊形的性質以及相似三角形的判定和性質.
練習冊系列答案
相關習題

科目:初中數學 來源:2011年浙江省杭州市中考數學模擬試卷(40)(解析版) 題型:解答題

(2007•濰坊)如圖,已知平面直角坐標系xOy中,點A(m,6),B(n,1)為兩動點,其中0<m<3,連接OA,OB,OA⊥OB.
(1)求證:mn=-6;
(2)當S△AOB=10時,拋物線經過A,B兩點且以y軸為對稱軸,求拋物線對應的二次函數的關系式;
(3)在(2)的條件下,設直線AB交y軸于點F,過點F作直線l交拋物線于P,Q兩點,問是否存在直線l,使S△POF:S△QOF=1:3?若存在,求出直線l對應的函數關系式;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源:2011年廣東省茂名市化州市文樓鎮(zhèn)第一中學中考數學一模試卷(解析版) 題型:解答題

(2007•濰坊)如圖,已知平面直角坐標系xOy中,點A(m,6),B(n,1)為兩動點,其中0<m<3,連接OA,OB,OA⊥OB.
(1)求證:mn=-6;
(2)當S△AOB=10時,拋物線經過A,B兩點且以y軸為對稱軸,求拋物線對應的二次函數的關系式;
(3)在(2)的條件下,設直線AB交y軸于點F,過點F作直線l交拋物線于P,Q兩點,問是否存在直線l,使S△POF:S△QOF=1:3?若存在,求出直線l對應的函數關系式;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源:2011年浙江省杭州市中考數學模擬試卷(35)(解析版) 題型:解答題

(2007•濰坊)如圖,已知平面直角坐標系xOy中,點A(m,6),B(n,1)為兩動點,其中0<m<3,連接OA,OB,OA⊥OB.
(1)求證:mn=-6;
(2)當S△AOB=10時,拋物線經過A,B兩點且以y軸為對稱軸,求拋物線對應的二次函數的關系式;
(3)在(2)的條件下,設直線AB交y軸于點F,過點F作直線l交拋物線于P,Q兩點,問是否存在直線l,使S△POF:S△QOF=1:3?若存在,求出直線l對應的函數關系式;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源:2007年全國中考數學試題匯編《二次函數》(06)(解析版) 題型:解答題

(2007•濰坊)如圖,已知平面直角坐標系xOy中,點A(m,6),B(n,1)為兩動點,其中0<m<3,連接OA,OB,OA⊥OB.
(1)求證:mn=-6;
(2)當S△AOB=10時,拋物線經過A,B兩點且以y軸為對稱軸,求拋物線對應的二次函數的關系式;
(3)在(2)的條件下,設直線AB交y軸于點F,過點F作直線l交拋物線于P,Q兩點,問是否存在直線l,使S△POF:S△QOF=1:3?若存在,求出直線l對應的函數關系式;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源:2007年山東省濰坊市中考數學試卷(解析版) 題型:解答題

(2007•濰坊)如圖,已知平面直角坐標系xOy中,點A(m,6),B(n,1)為兩動點,其中0<m<3,連接OA,OB,OA⊥OB.
(1)求證:mn=-6;
(2)當S△AOB=10時,拋物線經過A,B兩點且以y軸為對稱軸,求拋物線對應的二次函數的關系式;
(3)在(2)的條件下,設直線AB交y軸于點F,過點F作直線l交拋物線于P,Q兩點,問是否存在直線l,使S△POF:S△QOF=1:3?若存在,求出直線l對應的函數關系式;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案