【題目】在矩形ABCD中,AB=6cm,BC=12cm,點(diǎn)P從點(diǎn)A出發(fā),沿AB邊向點(diǎn)B以每秒1cm的速度移動(dòng),同時(shí)點(diǎn)Q從點(diǎn)B出發(fā)沿BC邊向點(diǎn)C以每秒2cm的速度移動(dòng)P、Q兩點(diǎn)在分別到達(dá)B、C兩點(diǎn)后就停止移動(dòng),設(shè)兩點(diǎn)移動(dòng)的時(shí)間為t秒,回答下列問(wèn)題:
(1)如圖1,當(dāng)t為幾秒時(shí),△PBQ的面積等于5cm2?
(2)如圖2,當(dāng)t=秒時(shí),試判斷△DPQ的形狀,并說(shuō)明理由;
(3)如圖3,以Q為圓心,PQ為半徑作⊙Q.
①在運(yùn)動(dòng)過(guò)程中,是否存在這樣的t值,使⊙Q正好與四邊形DPQC的一邊(或邊所在的直線)相切?若存在,求出t值;若不存在,請(qǐng)說(shuō)明理由;
②若⊙Q與四邊形DPQC有三個(gè)公共點(diǎn),請(qǐng)直接寫(xiě)出t的取值范圍。
【答案】(1)1秒或5秒(2)直角三角形(3)①t=0或t=﹣18+12②0<t<6﹣18
【解析】試題分析:(1)由題意可知PA=t,BQ=2t,從而得到PB=6﹣t,BQ=2t,然后根據(jù)△PQB的面積=5cm2列方程求解即可;
(2)由t=,可求得AP=,QB=3,PB=,CQ=9,由勾股定理可證明DQ2+PQ2=PD2,由勾股定理的逆定理可知△DPQ為直角三角形;
(3)①當(dāng)t=0時(shí),點(diǎn)P與點(diǎn)A重合時(shí),點(diǎn)B與點(diǎn)Q重合,此時(shí)圓Q與PD相切;當(dāng)⊙Q正好與四邊形DPQC的DC邊相切時(shí),由圓的性質(zhì)可知QC=QP,然后依據(jù)勾股定理列方程求解即可;
②先求得⊙Q與四邊形DPQC有兩個(gè)公共點(diǎn)時(shí)t的值,然后可確定出t的取值范圍.
試題解析:(1)∵當(dāng)運(yùn)動(dòng)時(shí)間為t秒時(shí),PA=t,BQ=2t,
∴PB=6﹣t,BQ=2t.
∵△PBQ的面積等于5cm2,
∴PBBQ=(6﹣t)2t.
∴.
解得:t1=1,t2=5.
答:當(dāng)t為1秒或5秒時(shí),△PBQ的面積等于5cm2.
(2)△DPQ的形狀是直角三角形.
理由:∵當(dāng)t=秒時(shí),AP=,QB=3,
∴PB=6﹣=,CQ=12﹣3=9.
在Rt△PDA中,由勾股定理可知:PD2=DA2+PA2=122+()2=.
同理:在Rt△PBQ和Rt△DCQ中由勾股定理可得:DQ2=117,PQ2=.
∵117+=,
∴DQ2+PQ2=PD2.
所以△DPQ的形狀是直角三角形.
(3span>)①(Ⅰ)由題意可知圓Q與AB、BC不相切.
(Ⅱ)如圖1所示:當(dāng)t=0時(shí),點(diǎn)P與點(diǎn)A重合時(shí),點(diǎn)B與點(diǎn)Q重合.
∵∠DAB=90°,
∴∠DPQ=90°.
∴DP⊥PQ.
∴DP為圓Q的切線.
(Ⅲ)當(dāng)⊙Q正好與四邊形DPQC的DC邊相切時(shí),如圖2所示.
由題意可知:PB=6﹣t,BQ=2t,PQ=CQ=12﹣2t.
在Rt△PQB中,由勾股定理可知:PQ2=PB2+QB2,即(6﹣t)2+(2t)2=(12﹣2t)2.
解得:t1=﹣18+12,t2=﹣18﹣12(舍去).
綜上所述可知當(dāng)t=0或t=﹣18+12時(shí),⊙Q與四邊形DPQC的一邊相切.
②(Ⅰ)當(dāng)t=0時(shí),如圖1所示:⊙Q與四邊形DPQC有兩個(gè)公共點(diǎn);
(Ⅱ)如圖3所示:當(dāng)圓Q經(jīng)過(guò)點(diǎn)D時(shí),⊙Q與四邊形DPQC有兩個(gè)公共點(diǎn).
由題意可知:PB=6﹣t,BQ=2t,CQ=12﹣2t,DC=6.
由勾股定理可知:DQ2=DC2+CQ2=62+(12﹣2t)2,PQ2=PB2+QB2=(6﹣t)2+(2t)2.
∵DQ=PQ,
∴DQ2=PQ2,即62+(12﹣2t)2=(6﹣t)2+(2t)2.
整理得:t2+36t﹣144=0.
解得:t1=6﹣18,t2=﹣6﹣18(舍去).
∴當(dāng)0<t<6﹣18時(shí),⊙Q與四邊形DPQC有三個(gè)公共點(diǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列計(jì)算結(jié)果中等于3的數(shù)是( )
A.|﹣7|+|+4|
B.|(﹣7)+(+4)|
C.|+7|+|﹣4|
D.|(﹣7)﹣(﹣3)|
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】四邊形ABCD中,∠BAD=130°,∠B=∠D=90°,在BC、CD上分別找一點(diǎn)M、N,使三角形AMN周長(zhǎng)最小時(shí),則∠AMN+∠ANM的度數(shù)為( 。
A. 80° B. 90° C. 100° D. 130°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】關(guān)于x的一元二次方程x2﹣2x+2+m2=0的根的情況是( )
A.有兩個(gè)不相等的實(shí)數(shù)根
B.有兩個(gè)相等的實(shí)數(shù)根
C.沒(méi)有實(shí)數(shù)根
D.無(wú)法確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,等邊△ABC中,點(diǎn)D、E、F分別為AB、BC、CA上的點(diǎn),且AD=BE=CF.
(1)△DEF是__________三角形;
(2)如圖2,M為線段BC上一點(diǎn),連接FM,
在FM的右側(cè)作等邊△FMN,連接DM、EN.求證:DM=EN;
(3)如圖3,將上題中“M為線段BC上一點(diǎn)”改為“點(diǎn)M為CB延長(zhǎng)線上一點(diǎn)”,其余條件不變,求證:DM=EN.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】關(guān)于x的一元二次方程x2+(2k+1)x+k2+1=0有兩個(gè)不等實(shí)根x1、x2
(1)求實(shí)數(shù)k的取值范圍。
(2)若方程兩實(shí)根x1、x2滿(mǎn)足x1+x2=﹣x1x2,求k的值。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】李老師做了個(gè)長(zhǎng)方形教具,其中一邊長(zhǎng)為2a+b,另一邊長(zhǎng)為a﹣b,則該長(zhǎng)方形的面積為( 。
A.6a+b
B.2a2﹣ab﹣b2
C.3a
D.10a﹣b
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在等邊△ABC中,點(diǎn)D,E分別在邊BC,AC上,且DE∥AB,過(guò)點(diǎn)E作EF⊥DE,交BC的延長(zhǎng)線于點(diǎn)F.
(1)求∠F的大;
(2)若CD=3,求DF的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com