【題目】如圖,有一座圓弧形拱橋,橋下水面寬度AB為12m,拱高CD為4m.
(1)求拱橋的半徑;
(2)有一艘寬5m的貨船,船艙頂部為長方形,并高出水面3.6m,求此貨船是否能順利通過拱橋?
【答案】(1)r=6.5;(2)此貨船能不順利通過這座拱橋,見解析
【解析】
(1)根據(jù)垂徑定理和勾股定理求解;
(2)連接ON,OB,通過求距離水面2米高處即ED長為2時,橋有多寬即MN的長與貨船頂部的3米做比較來判定貨船能否通過.先根據(jù)半弦,半徑和弦心距構(gòu)造直角三角形求出半徑的長,再根據(jù)Rt△OEN中勾股定理求出EN的長,從而求得MN的長.
解:(1)如圖,連接ON,OB.
∵OC⊥AB,
∴D為AB中點,
∵AB=12m,
∴BD=AB=6m.
又∵CD=4m,
設OB=OC=ON=r,則OD=(r﹣4)m.
在Rt△BOD中,根據(jù)勾股定理得:r2=(r﹣4)2+62,
解得:r=6.5.
(2)∵CD=4m,船艙頂部為長方形并高出水面AB=2m,
∴CE=4﹣3.6=0.4(m),
∴OE=r﹣CE=6.5﹣0.4=6.1(m),
在Rt△OEN中,EN2=ON2﹣OE2=6.52﹣6.12=5.04(m2),
∴EN=(m).
∴MN=2EN=2×≈4.48m<5m.
∴此貨船能不順利通過這座拱橋.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線L:y=﹣x+2與x軸、y軸分別交于A、B兩點,在y軸上有一點N(0,4),動點M從A點以每秒1個單位的速度勻速沿x軸向左移動.
(1)點A的坐標:_____;點B的坐標:_____;
(2)求△NOM的面積S與M的移動時間t之間的函數(shù)關(guān)系式;
(3)在y軸右邊,當t為何值時,△NOM≌△AOB,求出此時點M的坐標;
(4)在(3)的條件下,若點G是線段ON上一點,連結(jié)MG,△MGN沿MG折疊,點N恰好落在x軸上的點H處,求點G的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】 如圖,等腰直角三角形ABC中,∠BAC=90°,AB=AC,點D是直線AB上一動點(不包含點A,B),過點B作BE⊥CD于點E,連接EA.
(1)如圖1,當點D在線段AB上時,直接寫出線段CE,BE,AE的數(shù)量關(guān)系:______.
(2)如圖2,當點D在線段AB的延長線上時,判斷線段CE,BE,AE的數(shù)量關(guān)系,并加以證明.
(3)如圖3,當點D在線段BA的延長線上時,并將已知條件中的“AB=AC”改成;,其他條件不變,若CE=1,,請直接寫出線段BE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某出租公司有若干輛同一型號的貨車對外出租,每輛貨車的日租金實行淡季、旺季兩種價格標準,旺季每輛貨車的日租金比淡季上漲.據(jù)統(tǒng)計,淡季該公司平均每天有輛貨車未出租,日租金總收入為元;旺季所有的貨車每天能全部租出,日租金總收入為元.
(1)該出租公司這批對外出租的貨車共有多少輛?淡季每輛貨車的日租金多少元?
(2)經(jīng)市場調(diào)查發(fā)現(xiàn),在旺季如果每輛貨車的日租金每上漲元,每天租出去的貨車就會減少輛,不考慮其它因素,每輛貨車的日租金上漲多少元時,該出租公司的日租金總收入最高?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知如圖,∠ADB=∠CDB=∠BAC=45°,結(jié)論:①∠ABC=90°,②AB=BC,③AD2+DC2=2AB2,④AD+DC=BD,其中正確的有( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形ABCD中,AB=2,點E是CD的中點,連接AE,將△ADE沿AE折疊至△AHE,連接BH,延長AE,BH交于點F;BF,CD交于點G,則FG=_______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b(k≠0)的圖象與反比例函數(shù)的圖象交于二、四象限內(nèi)的A、B兩點,與x軸交于C點,點A的坐標為(﹣2,3),點B的坐標為(4,n).
(1)求該反比例函數(shù)和一次函數(shù)的解析式;
(2)在x軸上是否存在點P,使△APC是直角三角形?若存,求出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形網(wǎng)格圖中建立平面直角坐標系,一條圓弧經(jīng)過格點、、,若該圓弧所在圓的圓心為點,請你利用網(wǎng)格圖回答下列問題:
(1)圓心的坐標為_____;
(2)若扇形是一個圓錐的側(cè)面展開圖,求該圓錐底面圓的半徑長(結(jié)果保留根號).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】將△ABC繞點C旋轉(zhuǎn)180°得到△FEC.
(1)試猜想AE與BF有何關(guān)系?說明理由.
(2)若△ABC的面積為3cm2,求四邊形ABFE的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com