科目:初中數(shù)學 來源: 題型:
已知拋物線與軸交于點B (-4,0),頂點為(A-2,-4);連接AB,把AB所在直線沿軸上下平移的直線設為:。
(1)求拋物線的解析式
(2)當直線經(jīng)過原點時,試在上找一點P,使四邊形BAOP為直角梯形,求出點P坐標
(3)直線在上下平移過程中是否存在的取值范圍,使與都隨的增大而減小,若存在請求出其范圍,若不存在請說明理由。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
在平面直角坐標系O中,過原點O及點A(0,2) 、C(6,0)作矩形OABC,∠AOC的平分線交AB于點D.點P從點O出發(fā),以每秒個單位長度的速度沿射線OD方向移動;同時點Q從點O出發(fā),以每秒2個單位長度的速度沿x軸正方向移動.設移動時間為t秒,當t為 時,△PQB為直角三角形。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
如圖①,O為坐標原點,點B在x軸的正半軸上,四邊形OACB是平行四邊形, ,反比例函數(shù)(k>0)在第一象限內(nèi)的圖象經(jīng)過點A,與BC交于點F.
(1)若OA=10,求反比例函數(shù)解析式;
(2)若點F為BC的中點,且△AOF的面積S=12,求OA的長和點C的坐標;
(3)在(2)中的條件下,過點F作EF∥OB,交OA于點E(如圖②),點P為直線EF上的一個動點,連接PA,PO.是否存在這樣的點P,使以P、O、A為頂點的三角形是直角三角形?若存在,請直接寫出所有點P的坐標;若不存在,請說明理由.(2013湖州中考24題)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
如圖,AB是半圓直徑,半徑OC⊥AB于點O,AD平分∠CAB交弧BC于點D,連結(jié)CD、OD,給出以下四個結(jié)論:①CE=OE;②;③△ODE∽△ADO;④.其中正確結(jié)論的序號是 。(2014新圍期初卷改編)
A.①②④ B. ④ C. ①③④ D. ②③④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com