(1)證明:連接OE,
∵AB=BC且D是AC中點,
∴BD⊥AC,
∵BE平分∠ABD,
∴∠ABE=∠DBE,
∵OB=OE
∴∠OBE=∠OEB,
∴∠OEB=∠DBE,
∴OE∥BD,
∵BD⊥AC,
∴OE⊥AC,
∵OE為⊙O半徑,
∴AC與⊙O相切.
(2)解:∵BD=6,sinC=
,BD⊥AC,
∴BC=10,
∴AB=BC=10,
設(shè)⊙O 的半徑為r,則AO=10-r,
∵AB=BC,
∴∠C=∠A,
∴sinA=sinC=
,
∵AC與⊙O相切于點E,
∴OE⊥AC,
∴sinA=
=
=
,
∴r=
,
答:⊙O的半徑是
…
分析:(1)連接OE,根據(jù)等腰三角形性質(zhì)求出BD⊥AC,推出∠ABE=∠DBE和∠OBE=∠OEB,得出∠OEB=∠DBE,推出OE∥BD,得出OE⊥AC,根據(jù)切線的判定定理推出即可;
(2)根據(jù)sinC=
求出AB=BC=10,設(shè)⊙O 的半徑為r,則AO=10-r,得出sinA=sinC=
,根據(jù)OE⊥AC,得出sinA=
=
=
,即可求出半徑.
點評:本題考查了平行線的性質(zhì)和判定,等腰三角形的性質(zhì)和判定,解直角三角形,切線的性質(zhì)和判定的應(yīng)用,解(1)小題的關(guān)鍵是求出OE∥BD,解(2)小題的關(guān)鍵是得出關(guān)于r的方程,題型較好,難度適中,用了方程思想.