1.已知一次函數(shù)y=kx+b的圖象經(jīng)過點(diǎn)(1,4)和(0,3).
(1)求k和b的值.
(2)若(a,6)在該一次函數(shù)的圖象上,求a的值.

分析 (1)把(1,4)和(0,3)兩點(diǎn)坐標(biāo)代入y=kx+b中得到關(guān)于k、b的方程組,然后解方程組求出k、b即可得到一次函數(shù)解析式;
(2)根據(jù)一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征,把(a,6)代入一次函數(shù)解析式中可求出a的值.

解答 解:(1)把點(diǎn)(1,4)和(0,3)代入y=kx+b得$\left\{\begin{array}{l}{k+b=4}\\{b=3}\end{array}\right.$,解得$\left\{\begin{array}{l}{k=1}\\{b=3}\end{array}\right.$.
所以一次函數(shù)解析式為y=x+3;
(2)把(a,6)代入y=x+3得a+3=6,解得a=3.

點(diǎn)評(píng) 本題考查了待定系數(shù)法求一次函數(shù)解析式:先設(shè)出函數(shù)的一般形式,如求一次函數(shù)的解析式時(shí),先設(shè)y=kx+b;再將自變量x的值及與它對(duì)應(yīng)的函數(shù)值y的值代入所設(shè)的解析式,得到關(guān)于待定系數(shù)的方程或方程組;然后解方程或方程組,求出待定系數(shù)的值,進(jìn)而寫出函數(shù)解析式.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

2.如圖是從上面看一個(gè)由若干個(gè)相同的小正方體搭成的幾何體得到的形狀圖,其中小正方形內(nèi)的數(shù)字是該位置小正方體的個(gè)數(shù),請(qǐng)你畫出從正面和左面看這個(gè)幾何體得到的形狀圖.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

12.一元二次方程3x2-4x=0的解是x1=0,x2=$\frac{4}{3}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

9.要組織一次籃球比賽,賽制為單循環(huán)形式(毎兩隊(duì)之間都賽一場(chǎng)),計(jì)劃安排15場(chǎng)比賽,設(shè)應(yīng)邀請(qǐng)x個(gè)球隊(duì)參加比賽,根據(jù)題意可列方程為( 。
A.x(x-1)=15B.x(x+1)=15C.$\frac{x(x-1)}{2}$=15D.$\frac{x(x+1)}{2}$=15

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

16.某菜農(nóng)搭建了一個(gè)橫截面為拋物線的大棚,尺寸如圖:
(1)如圖建立平面直角坐標(biāo)系,使拋物線對(duì)稱軸為y軸,求該拋物線的解析式;
(2)若需要開一個(gè)截面為矩形的門(如圖所示),已知門的高度為1.60米,那么門的寬度最大是多少米(不考慮材料厚度)?(結(jié)果保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

6.計(jì)算:
(1)-(-3)+7-|-8|
(2)-22+($\frac{1}{6}$-$\frac{2}{5}$)×30-5÷(-$\frac{1}{5}$).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

13.1納米=10-9米,甲型H1N1病毒細(xì)胞的直徑約為156納米,則156納米寫成科學(xué)記數(shù)法的形式是( 。
A.156×10-9B.15.6×10-8C.0.156×10-7D.1.56×10-7

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

10.某超市計(jì)劃購(gòu)進(jìn)一批甲、乙兩種玩具,若甲種玩具的進(jìn)價(jià)為每件30元,乙種玩具的進(jìn)價(jià)為每件27元;
(1)如果購(gòu)進(jìn)甲種玩具有優(yōu)惠,優(yōu)惠方法是:購(gòu)進(jìn)甲種玩具超過20件,超出部分可以享受七折優(yōu)惠;若購(gòu)進(jìn)x(x>0)件甲種玩具需要花費(fèi)y元,請(qǐng)你求出y與x的函數(shù)關(guān)系;
(2)在(1)的條件下,超市決定在甲、乙兩種玩具中選購(gòu)一種,且數(shù)量超過20件,請(qǐng)你幫助超市判斷購(gòu)進(jìn)哪種玩具省錢.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

11.已知二次函數(shù)y=x2-2x-3.
(1)用配方法將解析式化為y=(x-h)2+k的形式;
(2)求這個(gè)函數(shù)圖象與x軸的交點(diǎn)坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案