(2013•荊門)如圖,在半徑為1的⊙O中,∠AOB=45°,則sinC的值為(  )
分析:首先過點A作AD⊥OB于點D,由在Rt△AOD中,∠AOB=45°,可求得AD與OD的長,繼而可得BD的長,然后由勾股定理求得AB的長,繼而可求得sinC的值.
解答:解:過點A作AD⊥OB于點D,
∵在Rt△AOD中,∠AOB=45°,
∴OD=AD=OA•cos45°=
2
2
×1=
2
2
,
∴BD=OB-OD=1-
2
2

∴AB=
AD2+BD2
=
2-
2
,
∵AC是⊙O的直徑,
∴∠ABC=90°,AC=2,
∴sinC=
2-
2
2

故選B.
點評:此題考查了圓周角定理、三角函數(shù)以及勾股定理.此題難度適中,注意掌握輔助線的作法,注意數(shù)形結(jié)合思想的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•荊門)如右圖所示,已知等腰梯形ABCD,AD∥BC,若動直線l垂直于BC,且向右平移,設(shè)掃過的陰影部分的面積為S,BP為x,則S關(guān)于x的函數(shù)圖象大致是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•荊門)如圖,在Rt△ABC中,∠ACB=90°,D是AB的中點,過D點作AB的垂線交AC于點E,BC=6,sinA=
3
5
,則DE=
15
4
15
4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•荊門)如圖1,在△ABC中,AB=AC,點D是BC的中點,點E在AD上.
(1)求證:BE=CE;
(2)如圖2,若BE的延長線交AC于點F,且BF⊥AC,垂足為F,∠BAC=45°,原題設(shè)其它條件不變.求證:△AEF≌△BCF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•荊門)如圖1,正方形ABCD的邊長為2,點M是BC的中點,P是線段MC上的一個動點(不與M、C重合),以AB為直徑作⊙O,過點P作⊙O的切線,交AD于點F,切點為E.
(1)求證:OF∥BE;
(2)設(shè)BP=x,AF=y,求y關(guān)于x的函數(shù)解析式,并寫出自變量x的取值范圍;
(3)延長DC、FP交于點G,連接OE并延長交直線DC與H(圖2),問是否存在點P,使△EFO∽△EHG(E、F、O與E、H、G為對應(yīng)點)?如果存在,試求(2)中x和y的值;如果不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案