(1)如圖①,在正方形ABCD中,△AEF的頂點E,F(xiàn)分別在BC,CD邊上,高AG與正方形的邊長相等,求∠EAF的度數(shù).
(2)如圖②,在Rt△ABD中,∠BAD=90°,AB=AD,點M,N是BD邊上的任意兩點,且∠MAN=45°,將△ABM繞點A逆時針旋轉(zhuǎn)90°至△ADH位置,連接NH,試判斷MN,ND,DH之間的數(shù)量關(guān)系,并說明理由.
(3)在圖①中,連接BD分別交AE,AF于點M,N,若EG=4,GF=6,BM=3,求AG,MN的長.

【答案】分析:(1)根據(jù)高AG與正方形的邊長相等,證明三角形全等,進(jìn)而證明角相等,從而求出解.
(2)用三角形全等和正方形的對角線平分每一組對角的知識可證明結(jié)論.
(3)設(shè)出線段的長,結(jié)合方程思想,用數(shù)形結(jié)合得到結(jié)果.
解答:解:(1)在Rt△ABE和Rt△AGE中,AB=AG,AE=AE,
∴Rt△ABE≌Rt△AGE(HL).
∴∠BAE=∠GAE.(1分)
同理,∠GAF=∠DAF.
.(2分)

(2)MN2=ND2+DH2.(3分)
∵∠BAM=∠DAH,∠BAM+∠DAN=45°,
∴∠HAN=∠DAH+∠DAN=45°.
∴∠HAN=∠MAN.
又∵AM=AH,AN=AN,
∴△AMN≌△AHN.
∴MN=HN.(5分)
∵∠BAD=90°,AB=AD,
∴∠ABD=∠ADB=45°.
∴∠HDN=∠HDA+∠ADB=90°.
∴NH2=ND2+DH2
∴MN2=ND2+DH2.(6分)

(3)由(1)知,BE=EG,DF=FG.
設(shè)AG=x,則CE=x-4,CF=x-6.
在Rt△CEF中,
∵CE2+CF2=EF2
∴(x-4)2+(x-6)2=102
解這個方程,得x1=12,x2=-2(舍去負(fù)根).
即AG=12.(8分)
在Rt△ABD中,

在(2)中,MN2=ND2+DH2,BM=DH,
∴MN2=ND2+BM2.(9分)
設(shè)MN=a,則
即a 2=(9-a) 2+(3 2,
.即.(10分)
點評:本題考查正方形的性質(zhì),四邊相等,對角線平分每一組對角,以及全等三角形的判定和性質(zhì),勾股定理的知識點等.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

點P是x軸正半軸的一個動點,過點P作x軸的垂線PA交雙曲線y=
1
x
于點A,連接OA.
(1)如圖甲,當(dāng)點P在x軸的正方向上運動時,Rt△AOP的面積大小是否變化?若不變,請求出Rt△AOP的面積;若改變,試說明理由;
(2)如圖乙,在x軸上的點P的右側(cè)有一點D,過點D作x軸的垂線交雙曲線于點B,連接BO交AP于點C,設(shè)△AOP的面積是S1,梯形BCPD的面積為S2,則S1與S2的大小關(guān)系是S1
S2(選填“>”、“<”、“=”);
(3)如圖丙,AO的延長線與雙曲線y=
1
x
的另一個交點為F,F(xiàn)H垂直于x軸,垂足為點H,連接AH,PF,試證明四邊形APFH的面積為一個常數(shù).
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知點P是x軸正半軸的一個動點,過點P作x軸的垂線PA交雙曲線y=
1x
于點A,連接OA.
精英家教網(wǎng)
(1)如圖甲,當(dāng)點P在x軸的正方向上運動時,Rt△AOP的面積大小是否變化答:
 
(請?zhí)睢白兓被颉安蛔兓保?BR>若不變,請求出Rt△AOP的面積=
 
;若改變,試說明理由(自行思索,不必作答);
(2)如圖乙,在x軸上的點P的右側(cè)有一點D,過點D作x軸的垂線交雙曲線于點B,連接BO交AP于C,設(shè)△AOP的面積是S1,梯形BCPD的面積為S2,則S1與S2的大小關(guān)系是S1
 
S2(請?zhí)睢埃尽、“<”或?”).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•深圳)如圖1,直線AB過點A(m,0),B(0,n),且m+n=20(其中m>0,n>0).
(1)m為何值時,△OAB面積最大?最大值是多少?
(2)如圖2,在(1)的條件下,函數(shù)y=
k
x
(k>0)
的圖象與直線AB相交于C、D兩點,若S△OCA=
1
8
S△OCD
,求k的值.
(3)在(2)的條件下,將△OCD以每秒1個單位的速度沿x軸的正方向平移,如圖3,設(shè)它與△OAB的重疊部分面積為S,請求出S與運動時間t(秒)的函數(shù)關(guān)系式(0<t<10).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•錫山區(qū)一模)如圖1,在平面直角坐標(biāo)系xOy中,點A,B坐標(biāo)分別為(8,4),(0,4),線段CD在于x軸上,CD=3,點C從原點出發(fā)沿x軸正方向以每秒1個單位長度向右平移,點D隨著點C同時同速同方向運動,過點D作x軸的垂線交線段AB于點E,交OA于點G,連接CE交OA于點F.設(shè)運動時間為t,當(dāng)E點到達(dá)A點時,停止所有運動.

(1)求線段CE的長;
(2)記S為Rt△CDE與△ABO的重疊部分面積,試寫出S關(guān)于t函數(shù)關(guān)系式及t的取值范圍;
(3)如圖2,連接DF,
①當(dāng)t取何值時,以C,F(xiàn),D為頂點的三角形為等腰三角形?
②直接寫出△CDF的外接圓與OA相切時t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在向紅星鎮(zhèn)居民介紹王家莊位置的時候,我們可以這樣說:如圖1,在以紅星鎮(zhèn)為原點,正東方向為x軸正方向,正北方向為y軸正方向的平面直角坐標(biāo)系(1單位長度表示的實際距離為1km)中,王家莊的坐標(biāo)為(5,5);也可以說,王家莊在紅星鎮(zhèn)東北方向
50
km的地方.

還有一種方法廣泛應(yīng)用于航海、航空、氣象、軍事等領(lǐng)域.如圖2:在紅星鎮(zhèn)所建的雷達(dá)站O的雷達(dá)顯示屏上,把周角每15°分成一份,正東方向為0°,相鄰兩圓之間的距離為1個單位長度(1單位長度表示的實際距離為1km),現(xiàn)發(fā)現(xiàn)2個目標(biāo),我們約定用(10,15°)表示點M在雷達(dá)顯示器上的坐標(biāo),則:
(1)點N可表示為
(8,135°)
(8,135°)
;王家莊位置可表示為
50
,45°)
50
,45°)
;點N關(guān)于雷達(dá)站點0成中心對稱的點P的坐標(biāo)為
(8,315°)
(8,315°)
;
(2)S△OMP=
20
2
20
2
;
(3)若有一家大型超市A在圖中(4,30°)的地方,請直接標(biāo)出點A,并將超市A與雷達(dá)站O連接,現(xiàn)準(zhǔn)備在雷達(dá)站周圍建立便民服務(wù)店B,使得△ABO為底角30°的等腰三角形,請直接寫出B點在雷達(dá)顯示屏上的坐標(biāo).
(4,270°)或(4,150°)或(4
3
,0°)或(4
3
,60°).
(4,270°)或(4,150°)或(4
3
,0°)或(4
3
,60°).

查看答案和解析>>

同步練習(xí)冊答案