精英家教網 > 初中數學 > 題目詳情
如圖,正方形網格中,△ABC為格點三角形(頂點都是格點),將△ABC繞點A按逆時針方向旋轉90°得到△AB1C1
精英家教網(1)在正方形網格中,作出△AB1C1;(不要求寫作法)
(2)設網格小正方形的邊長為1cm,用陰影表示出旋轉過程中線段BC所掃過的圖形,然后求出它的面積.(結果保留π).
分析:(1)根據網格圖知:AB=4,BC=3,由勾股定理得,AC=5,作B1A⊥AB,且B1A=AB,作C1A⊥ABC且C1A=AC;
(2)陰影部分的面積等于扇形ACC1與△ABC的面積和減去扇形ABB1與△AB1C1,而△ABC與△AB1C1的面積相等,∴陰影部分的面積等于扇形ACC1減去扇形ABB1的面積.
解答:解:(1)作圖如圖:
精英家教網
(2)線段BC所掃過的圖形如圖所示.
根據網格圖知:AB=4,BC=3,所以AC=5,
陰影部分的面積等于扇形ACC1與△ABC的面積和減去扇形ABB1與△AB1C1,
故陰影部分的面積等于扇形ACC1減去扇形ABB1的面積,兩個扇形的圓心角都90度.
∴線段BC所掃過的圖形的面積S=
1
4
π(AC2-AB2)=
4
(cm2).
點評:本題利用了勾股定理,圓的面積公式求解.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

精英家教網在如圖的正方形網格中有一個格點三角形ABC.請在圖中畫一個與△ABC相似且相似比不等于1的格點三角形,并寫出它們的相似比.

查看答案和解析>>

科目:初中數學 來源: 題型:

22、如圖,正方形網格中,A、B、C均在格點上,在所給直角坐標系中解答下列問題:
(1)分別寫出A、B、C三點關于y軸對稱點的坐標;
(2)在圖中畫出以A、B、C、D為頂點的四邊形,使其為軸對稱圖形(畫一個即可).

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,正方形網格中,每一個小正方形的邊長都是1,四邊形ABCD的四個頂點都在格點上,O為AD邊的中點,若把四邊形ABCD繞著點O順時針旋轉180°.試解決下列問題:
(1)畫出四邊形ABCD旋轉后的圖形;
(2)設點C旋轉后的對應點為C′,則tan∠AC′B=
2
3
2
3
;
(3)求點C旋轉過程中所經過的路徑長.

查看答案和解析>>

科目:初中數學 來源: 題型:

在如圖的正方形網格中,每個小正方形的邊長都是單位1,△ABC的頂點均在格點上.
(1)畫出△ABC向左平移2個單位,然后再向上平移4個單位后的△A1B1C1;
(2)畫出△A2B2C2,使△A2B2C2和△A1B1C1關于點O成中心對稱;
(3)指出如何平移△ABC,使得△A2B2C2和△ABC能拼成一個平行四邊形.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,正方形網格中的交點,我們稱之為格點,點A用有序數對(2,2)表示,其中第一個數表示排數,第2個數表示列數,在圖中有一個格點C,使S△ABC=1,寫出符合條件的點C的有序數對.

查看答案和解析>>

同步練習冊答案