精英家教網(wǎng)如圖,設(shè)矩形ABCD和矩形AEFC的面積分別為S1、S2,則二者的大小關(guān)系是:S1
 
S2
分析:由于矩形ABCD的面積等于2個(gè)△ABC的面積,而△ABC的面積又等于矩形AEFC的一半,所以可得兩個(gè)矩形的面積關(guān)系.
解答:解:矩形ABCD的面積S=2S△ABC,而S△ABC=
1
2
S矩形AEFC,即S1=S2,故此題答案為=.
點(diǎn)評(píng):本題主要考查了矩形的性質(zhì)及面積的計(jì)算,能夠熟練運(yùn)用矩形的性質(zhì)進(jìn)行一些面積的計(jì)算問(wèn)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖:設(shè)矩形ABCD的面積是36cm2,在邊AB、AD上分別取點(diǎn)E、F,使AE=3EB,DF=2AF,DE與CF的交點(diǎn)為P,則△FPD精英家教網(wǎng)的面積是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

幾千年來(lái),人們給出勾股定理各種證法,有人統(tǒng)計(jì),現(xiàn)在世界上已找到400多種證明方法,古希臘的數(shù)學(xué)家、哲學(xué)家畢達(dá)哥拉斯在客廳品茶,不小心推倒了桌上一個(gè)火柴盒,就在這一瞬間,他雙眼放光,興奮不已,從此畢達(dá)哥拉斯定理(現(xiàn)教材中勾股定理)誕生了.其證法是:如圖,
精英家教網(wǎng)
設(shè)矩形ABCD為火柴盒側(cè)面,將這個(gè)火柴盒移推至A‵B‵C‵D的位置,D不動(dòng),若設(shè)AB=a、BC=b、DB=c.則梯形A‵B‵BC的面積S2梯形A‵B‵BC=
1
2
(a+b)(a+b)=
1
2
(a+b)2,且又知梯形S梯形A‵B‵BC=S△ABD+S△DBB‵+S△BCD=
1
2
ab+
1
2
c2+
1
2
ab,故有
1
2
(a+b)2=
1
2
ab+
1
2
c2+
1
2
ab,則a2+b2+2ab=c2+2ab,即a2+b2=c2
請(qǐng)你再寫(xiě)出一種證明方法:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

幾千年來(lái),人們給出勾股定理各種證法,有人統(tǒng)計(jì),現(xiàn)在世界上已找到400多種證明方法,古希臘的數(shù)學(xué)家、哲學(xué)家畢達(dá)哥拉斯在客廳品茶,不小心推倒了桌上一個(gè)火柴盒,就在這一瞬間,他雙眼放光,興奮不已,從此畢達(dá)哥拉斯定理(現(xiàn)教材中勾股定理)誕生了.其證法是:如圖,

設(shè)矩形ABCD為火柴盒側(cè)面,將這個(gè)火柴盒移推至A‵B‵C‵D的位置,D不動(dòng),若設(shè)AB=a、BC=b、DB=c.則梯形A‵B‵BC的面積S2梯形A‵B‵BC=數(shù)學(xué)公式(a+b)(a+b)=數(shù)學(xué)公式(a+b)2,且又知梯形S梯形A‵B‵BC=S△ABD+S△DBB‵+S△BCD=數(shù)學(xué)公式ab+數(shù)學(xué)公式c2+數(shù)學(xué)公式ab,故有數(shù)學(xué)公式(a+b)2=數(shù)學(xué)公式ab+數(shù)學(xué)公式c2+數(shù)學(xué)公式ab,則a2+b2+2ab=c2+2ab,即a2+b2=c2
請(qǐng)你再寫(xiě)出一種證明方法:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:《32.3 矩形、菱形的性質(zhì)定理和判定定理及其證明》2010年習(xí)題精選(解析版) 題型:填空題

如圖,設(shè)矩形ABCD和矩形AEFC的面積分別為S1、S2,則二者的大小關(guān)系是:S1    S2

查看答案和解析>>

同步練習(xí)冊(cè)答案