精英家教網(wǎng)如圖,H為正方形ABCD邊AD上一點(diǎn),E為CD延長線上一點(diǎn),若DH=DE,并判斷線段CH與AE的關(guān)系.
分析:根據(jù)正方形的四條邊都相等,四個(gè)角都是直角可得:AD=CD,∠ADE=∠CDH,又DH=DE,根據(jù)邊角邊定理證明△ADE和△CDH全等,再根據(jù)全等三角形對應(yīng)邊相等,進(jìn)而得出線段CH與AE垂直.
解答:解:線段CH與AE垂直且相等
精英家教網(wǎng)理由:延長CH到AE于一點(diǎn)N,
∵四邊形ABCD是正方形,
∴AD=DC,∠ADC=90°
∵E為CD延長線上的點(diǎn),
∴∠ADE=90°,
∴∠ADE=∠CDH,
在△ADE和△CDH中,
AD=CD
∠ADE=∠CDH
DE=DH
,
∴△ADE≌△CDH(SAS),
∴AE=CH;∠HCD=∠EAD,
∵∠CHD+∠DCH=90°,
∴∠AHN+∠NAH=90°,
∴∠ANH=90°,即CH⊥AE,
線段CH與AE垂直且相等.
點(diǎn)評:本題主要考查正方形的四條邊都相等和四個(gè)角都是直角的性質(zhì)以及三角形全等的判定和全等三角形對應(yīng)邊相等的性質(zhì),得出△ADE≌△CDH是解題關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

17、如圖,E為正方形ABCD的邊AB上一點(diǎn)(不含A、B點(diǎn)),F(xiàn)為BC邊的延長線上一點(diǎn),△DAE旋轉(zhuǎn)后能與△DCF重合.
(1)旋轉(zhuǎn)中心是哪一點(diǎn)?
(2)旋轉(zhuǎn)了多少度?
(3)如果連接EF,那么△DEF是怎樣的三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,P為正方形ABCD的對稱中心,A(0,3),B(1,0),直線OP交AB于N,DC于M,點(diǎn)H從原點(diǎn)O出發(fā)沿x軸的正半軸方向以1個(gè)單位每秒速度運(yùn)動,同時(shí),點(diǎn)R從O出發(fā)沿精英家教網(wǎng)OM方向以
2
個(gè)單位每秒速度運(yùn)動,運(yùn)動時(shí)間為t.求:
(1)C的坐標(biāo)為
 
;
(2)當(dāng)t為何值時(shí),△ANO與△DMR相似?
(3)△HCR面積S與t的函數(shù)關(guān)系式;并求以A、B、C、R為頂點(diǎn)的四邊形是梯形時(shí)t的值及S的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,G為正方形ABCD的對稱中心,A(0,2),B(1,0),直線OG交AB于E,DC于F,點(diǎn)Q從A出發(fā)沿A→B→C的方向以
5
個(gè)單位每秒速度運(yùn)動,同時(shí),點(diǎn)P從O出發(fā)沿OF方精英家教網(wǎng)向以
2
個(gè)單位每秒速度運(yùn)動,Q點(diǎn)到達(dá)終點(diǎn),點(diǎn)P停止運(yùn)動,運(yùn)動時(shí)間為t.求:
(1)求G點(diǎn)的坐標(biāo).
(2)當(dāng)t為何值時(shí),△AEO與△DFP相似?
(3)求△QCP面積S與t的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,P為正方形ABCD的對稱中心,正方形ABCD的邊長為
10
,tan∠ABO=3,直線OP交AB于N,DC于M,點(diǎn)H從原點(diǎn)O出發(fā)沿x軸的正半軸方向以1個(gè)單位每秒速度運(yùn)動,同時(shí),點(diǎn)R從O出發(fā)沿OM方向以
2
個(gè)單位每秒速度運(yùn)動,運(yùn)動時(shí)間為t,求:
(1)直接寫出A、D、P的坐標(biāo);
(2)求△HCR面積S與t的函數(shù)關(guān)系式;
(3)當(dāng)t為何值時(shí),△ANO與△DMR相似?
(4)求以A、B、C、R為頂點(diǎn)的四邊形是梯形時(shí)t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2009•梅州一模)如圖,O為正方形ABCD對角線AC上一點(diǎn),以O(shè)為圓心,OA長為半徑的⊙0與BC相切于點(diǎn)M,與AB、AD分別相交于點(diǎn)E、F.
(1)求證:CD與⊙0相切;
(2)若⊙0的半徑為
2
,求正方形ABCD的邊長.

查看答案和解析>>

同步練習(xí)冊答案