閱讀下列材料:的解是;

   的解是

   的解是;

   的解是

   ……

(1)請觀察上述方程與解的特征,猜想方程()的解,并驗證你的結論.

  (2)利用這個結論解關于的方程:.

解:(1)猜想方程()的解是.

   驗證:當時,,方程成立;

   當時,,方程成立.

   (2) 將方程變形為,

   解得,所以.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:閱讀理解

31、閱讀下列材料:我們知道|x|的幾何意義是在數(shù)軸上數(shù)x對應的點與原點的距離;即|x|=|x-0|,也就是說,|x|表示在數(shù)軸上數(shù)x與數(shù)0對應點之間的距離;這個結論可以推廣為|x1-x2|表示在數(shù)軸上x1,x2對應點之間的距離;
例1.已知|x|=2,求x的值.
解:容易看出,在數(shù)軸上與原點距離為2點的對應數(shù)為-2和2,
即x的值為-2和2.
例2.已知|x-1|=2,求x的值.
解:在數(shù)軸上與1的距離為2點的對應數(shù)為3和-1,
即x的值為3和-1.
仿照閱讀材料的解法,求下列各式中x的值.
(1)|x|=3
(2)|x+2|=4.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

綜合題
閱讀下列材料:
配方法是初中數(shù)學中經常用到的一個重要方法,學好配方法對我們學習數(shù)學有很大的幫助,所謂配方就是將某一個多項式變形為一個完全平方式,變形一定要是恒等的,例如解方程x2-4x+4=0,則(x-2)2=0∴x=2x2-2x+y2+4y+5=0
求x、y.則有(x2-2x+1)+(y2+4y+4)=0∴(x-1)2+(y+2)2=0.解得x=1,y=-2.x2-2x-3=0則有x2-2x+1-1-3=0∴(x-1)2=4.解得x=3或x=-1,根據(jù)以上材料解答下列各題:
(1)若a2+4a+4=0.求a的值.
(2)x2-4x+y2+6y+13=0.求(x+y)-2011的值.
(3)若a2-2a-8=0.求a的值.
(4)若a,b,c表示△ABC的三邊,且a2+b2+c2-ac-ab-bc=0,試判斷△ABC的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:學習周報 數(shù)學 北師大九年級版 2009-2010學年 第5期 總第161期 北師大版 題型:044

請閱讀下列材料:

為解方程(x2-1)2-5(x2-1)+4=0,我們可以將x2-1視為一個整體,然后設x2-1=y(tǒng),則原方程可化為y2-5y+4=0,①解得y1=1,y2=4.

當y=1時,即x2-1=1,解得x=±;當y=4時,即x2-1=4,解得x=±

所以原方程的解共有四個:x1,x2=-,x3,x4=-

請解答下列問題:

(1)由原方程得到方程①的過程中,運用換元的方法達到了________的目的,這是數(shù)學中轉化思想的運用;

(2)運用這種方法解方程:(x2-2x)2-11(x2-2x)+24=0.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

綜合題
閱讀下列材料:
配方法是初中數(shù)學中經常用到的一個重要方法,學好配方法對我們學習數(shù)學有很大的幫助,所謂配方就是將某一個多項式變形為一個完全平方式,變形一定要是恒等的,例如解方程x2-4x+4=0,則(x-2)2=0∴x=2x2-2x+y2+4y+5=0
求x、y.則有(x2-2x+1)+(y2+4y+4)=0∴(x-1)2+(y+2)2=0.解得x=1,y=-2.x2-2x-3=0則有x2-2x+1-1-3=0∴(x-1)2=4.解得x=3或x=-1,根據(jù)以上材料解答下列各題:
(1)若a2+4a+4=0.求a的值.
(2)x2-4x+y2+6y+13=0.求(x+y)-2011的值.
(3)若a2-2a-8=0.求a的值.
(4)若a,b,c表示△ABC的三邊,且a2+b2+c2-ac-ab-bc=0,試判斷△ABC的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

綜合題
閱讀下列材料:
配方法是初中數(shù)學中經常用到的一個重要方法,學好配方法對我們學習數(shù)學有很大的幫助,所謂配方就是將某一個多項式變形為一個完全平方式,變形一定要是恒等的,例如解方程x2-4x+4=0,則(x-2)2=0∴x=2x2-2x+y2+4y+5=0
求x、y.則有(x2-2x+1)+(y2+4y+4)=0∴(x-1)2+(y+2)2=0.解得x=1,y=-2.x2-2x-3=0則有x2-2x+1-1-3=0∴(x-1)2=4.解得x=3或x=-1,根據(jù)以上材料解答下列各題:
(1)若a2+4a+4=0.求a的值.
(2)x2-4x+y2+6y+13=0.求(x+y)-2011的值.
(3)若a2-2a-8=0.求a的值.
(4)若a,b,c表示△ABC的三邊,且a2+b2+c2-ac-ab-bc=0,試判斷△ABC的形狀,并說明理由.

查看答案和解析>>

同步練習冊答案