【題目】如圖,在平面直角坐標(biāo)系中,矩形的邊、分別在軸和y軸上,,,點(diǎn)Q是邊上一個(gè)動(dòng)點(diǎn),過點(diǎn)Q的反比例函數(shù)與邊交于點(diǎn)P.若將沿折疊,點(diǎn)B的對(duì)應(yīng)點(diǎn)E恰好落在對(duì)角線上,則此時(shí)反比例函數(shù)的解析式是_______.
【答案】
【解析】
由題意得:直線AC的函數(shù)解析式為:y=x+4,設(shè)點(diǎn)E坐標(biāo)是:(x,x+4),作EM⊥BC,EN⊥AB,則ME=4-(x+4)= x,NE=6-x,易證:PME~QNE,進(jìn)而得到:,求出點(diǎn)E坐標(biāo)是:(,),在RtPME中,PM2+ME2=PE2,列出方程,即可求出k得值,進(jìn)而得到答案.
∵在平面直角坐標(biāo)系中,矩形的邊、分別在x軸和y軸上,,,
∴點(diǎn)A坐標(biāo)是:(6,0),點(diǎn)C坐標(biāo)是:(0,4),
設(shè)直線AC的函數(shù)解析式為:y=kx+b,把(6,0),(0,4),代入得:
解得:,
∴直線AC的函數(shù)解析式為:y=x+4,
∵點(diǎn)E恰好落在對(duì)角線上,
設(shè)點(diǎn)E坐標(biāo)是:(x,x+4),作EM⊥BC,EN⊥AB,則ME=4-(x+4)= x,NE=6-x,∠PEM=∠QEN,∠PME=∠QNE=90°,
∴PME~
∴,
∵點(diǎn)Q是邊上一個(gè)動(dòng)點(diǎn),過點(diǎn)Q的反比例函數(shù)與邊交于點(diǎn)P,
∴Q(6,),P(,4),
∵沿折疊得到
∴PB=PE=6-,BQ=EQ=4-,
∴,即:,解得:x=,
∴點(diǎn)E坐標(biāo)是:(,)
∵在RtPME中,PM2+ME2=PE2,
∴ ,解得:k=,
∴反比例函數(shù)的解析式為: ,
故答案是: .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2018年非洲豬瘟疫情暴發(fā)后,專家預(yù)測(cè),2019年我市豬肉售價(jià)將逐月上漲,每千克豬肉的售價(jià)y1(元)與月份x(1≤x≤12,且x為整數(shù))之間滿足一次函數(shù)關(guān)系,如下表所示.每千克豬肉的成本y2(元)與月份x(1≤x≤12,且x為整數(shù))之間滿足二次函數(shù)關(guān)系,且3月份每千克豬肉的成本全年最低,為9元,如圖所示.
月份x | … | 3 | 4 | 5 | 6 | … |
售價(jià)y1/元 | … | 12 | 14 | 16 | 18 | … |
(1)求y1與x之間的函數(shù)關(guān)系式.
(2)求y2與x之間的函數(shù)關(guān)系式.
(3)設(shè)銷售每千克豬肉所獲得的利潤(rùn)為w(元),求w與x之間的函數(shù)關(guān)系式,哪個(gè)月份銷售每千克豬肉所第獲得的利潤(rùn)最大?最大利潤(rùn)是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知O是坐標(biāo)原點(diǎn),B、C兩點(diǎn)的坐標(biāo)分別為(3,-1)、(2,1).
(1)以O點(diǎn)為位似中心在y軸的左側(cè)將△OBC放大到兩倍(即新圖與原圖的相似比為2),畫出圖形;
(2)B點(diǎn)的對(duì)應(yīng)點(diǎn)B′的坐標(biāo)是 ;C點(diǎn)的對(duì)應(yīng)點(diǎn)C′的坐標(biāo)是 ;
(3)在BC上有一點(diǎn)P(x,y),按(1)的方式得到的對(duì)應(yīng)點(diǎn)P′的坐標(biāo)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)將標(biāo)有數(shù)字1、2、3、4的四張卡片洗勻后,背面朝上放在桌子上,所有卡片的形狀、大小都完全相同.現(xiàn)隨機(jī)從中抽取一張卡片將其上面的數(shù)字作為十位上的數(shù),然后放回洗勻,再隨機(jī)抽取一張卡片,將其上面的數(shù)字作為個(gè)位上的數(shù),組成兩位數(shù).
(1)請(qǐng)用列表或畫樹狀圖的方法表示出所有可能出現(xiàn)的結(jié)果:
(2)求這個(gè)兩位數(shù)恰好能被3整除的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知一次函數(shù)y=x﹣2與反比例函數(shù)y=的圖象交于A、B兩點(diǎn).
(1)求A、B兩點(diǎn)的坐標(biāo);
(2)觀察圖象,直接寫出一次函數(shù)值小于反比例函數(shù)值的x的取值范圍;
(3)坐標(biāo)原點(diǎn)為O,求△AOB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店購(gòu)進(jìn)一批單價(jià)為8元的商品,經(jīng)調(diào)研發(fā)現(xiàn),這種商品每天的銷售量y(件)是關(guān)于銷售單價(jià)x(元)的一次函數(shù),其關(guān)系如下表:
x(元) | 10 | 11 | 12 | 13 | 14 |
y(件) | 100 | 90 | 80 | 70 | 60 |
(1)求y與x之間的關(guān)系式;
(2)設(shè)商店每天銷售利潤(rùn)為w(元),求出w與x之間的關(guān)系式,并求出每天銷售單價(jià)定為多少時(shí)利潤(rùn)最大?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】深圳著名“網(wǎng)紅打卡地”東部華僑城在2018年春節(jié)長(zhǎng)假期間,接待游客達(dá)20萬人次,預(yù)計(jì)在2020年五一長(zhǎng)假期間,接待游客獎(jiǎng)達(dá)28.8萬人次.
一家特色小面店希望在五一長(zhǎng)期限期間獲得好的收益,經(jīng)測(cè)算知,該小面成本價(jià)為每碗6元,借鑒經(jīng)驗(yàn):若每碗賣25元,平均每天將銷售3000碗,若價(jià)格每降低1元,則平均每天多銷售30碗.
(1)求出2018至2020年五一長(zhǎng)假期間游客人次的年平均增長(zhǎng)率;
(2)為了更好地維護(hù)深圳城市形象,店家規(guī)定每碗售價(jià)不得超過20元,則當(dāng)每碗售價(jià)定為多少元時(shí),店家才能實(shí)現(xiàn)每天利潤(rùn)6300元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,拋物線y=ax2+bx+c與坐標(biāo)軸分別交于點(diǎn)A(0,6),B(6,0),C(﹣2,0),點(diǎn)P是線段AB上方拋物線上的一個(gè)動(dòng)點(diǎn).
(1)求拋物線的解析式;
(2)當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),△PAB的面積有最大值?
(3)過點(diǎn)P作x軸的垂線,交線段AB于點(diǎn)D,再過點(diǎn)P做PE∥x軸交拋物線于點(diǎn)E,連結(jié)DE,請(qǐng)問是否存在點(diǎn)P使△PDE為等腰直角三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面是小石設(shè)計(jì)的“過圓上一點(diǎn)作圓的切線”的尺規(guī)作圖的過程.
已知:如圖1,及上一點(diǎn)P.
求作:直線PQ,使得PQ與相切.
作法:如圖2,
①連接PO并延長(zhǎng)交于點(diǎn)A;
②在上任取一點(diǎn)B(點(diǎn)P,A除外),以點(diǎn)B為圓心,BP長(zhǎng)為半徑作,與射線PO的另一個(gè)交點(diǎn)為C.
③連接CB并延長(zhǎng)交于點(diǎn)Q.
④作直線PQ;
所以直線PQ就是所求作的直線.
根據(jù)小石設(shè)計(jì)的尺規(guī)作圖的過程.
(1)使用直尺和圓規(guī),補(bǔ)全圖形:(保留作圖痕跡)
(2)完成下面的證明.
證明:∵CQ是的直徑,
∴________(________________)(填推理的依據(jù))
∴.
又∵OP是的半徑,
∴PQ是的切線(________________)(填推理的依據(jù))
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com