如圖,已知扇形AOB的半徑為6cm,圓心角的度數(shù)為120°,若將此扇形圍成一個(gè)圓錐.則圍成的圓錐的表面積為( )
A.4πcm2
B.8πcm2
C.12πcm2
D.16πcm2
【答案】分析:首先求得弧長(zhǎng)即圓錐的底面半徑,則可求圓錐底面的面積,底面積加上圓錐的側(cè)面積即圓錐的全面積.
解答:解:圓錐的側(cè)面積是:=12π;
扇形的弧長(zhǎng)是:=4π,則底面半徑是2,
則底面面積是:4π,
則圍成的圓錐的表面積是:12π+4π=16π.
故選D.
點(diǎn)評(píng):本題考查了圓錐的計(jì)算,正確理解圓錐的側(cè)面展開圖與原來的扇形之間的關(guān)系是解決本題的關(guān)鍵,理解圓錐的母線長(zhǎng)是扇形的半徑,圓錐的底面圓周長(zhǎng)是扇形的弧長(zhǎng).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

19、如圖,已知扇形AOB的半徑為12,OA⊥OB,C為OA上一點(diǎn),以AC為直徑的半圓O1,和以O(shè)B為直徑的半圓O2相切,則半圓O1的半徑為
4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知扇形AOB的半徑為12,OA⊥OB,C為OA上一點(diǎn),以AC為直徑的半圓O1和以O(shè)B為直徑的半圓O2相切,則半圓O1的半徑為(  )
A、2
B、3
C、2
2
D、4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知扇形AOB,OA⊥OB,C為OB上一點(diǎn),以O(shè)A為直線的半圓O1與以BC為直徑的半圓O2相切于點(diǎn)D.
(1)若⊙O1的半徑為R,⊙O2的半徑為r,求R與r的比;
(2)若扇形的半徑為12,求圖中陰影部分面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•龍巖模擬)如圖,已知扇形AOB的半徑為6cm,圓心角的度數(shù)為120°,若將此扇形圍成一個(gè)圓錐.則圍成的圓錐的表面積為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知扇形AOB的半徑為12,OA⊥OB,C為OB上一點(diǎn),以O(shè)A為直徑的半圓O1與以BC為直徑的半圓O2相切于點(diǎn)D,求圖中陰影部分的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案