27、如圖,OC平分∠AOD,∠BOD=2∠AOB.若∠AOD=114°,求∠BOC的度數(shù).
分析:此題可設(shè)∠AOB=x,則∠BOD=2x,再根據(jù)∠AOD=114°列方程求解.然后根據(jù)角平分線求得∠AOC,再運(yùn)用角之間的差求得∠BOC.
解答:解:設(shè)∠AOB=x,則∠BOD=2x,
∴x+2x=114,x=38,
即∠AOB=38°,
又OC平分∠AOD,
∴∠AOC=57°,
∴∠BOC=∠AOC-∠AOB=19°.
故答案為19°.
點(diǎn)評(píng):解決此類題時(shí),最好設(shè)未知數(shù),這樣能夠迅速表示出相關(guān)的角,運(yùn)用列方程的方法進(jìn)行求解.這樣做思路較為清晰.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

16、如圖,CD⊥AB于點(diǎn)D,BE⊥AC于點(diǎn)E,BE,CD交于點(diǎn)O,且AO平分∠BAC,求證:OB=OC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,CD⊥AB于D點(diǎn),BE⊥AC于E點(diǎn),BE,CD交于O點(diǎn),且AO平分∠BAC.
求證:OB=OC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

19、如圖,△ABC中,AB=AC,兩條角平分線BD、CE相交于點(diǎn)O.
(1)OB與OC相等嗎?請(qǐng)說(shuō)明你的理由;
(2)若連接AO,并延長(zhǎng)AO交BC邊于F點(diǎn).你有哪些發(fā)現(xiàn)請(qǐng)寫(xiě)出兩條,并就其中的一條發(fā)現(xiàn)寫(xiě)出你的發(fā)現(xiàn)過(guò)程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2011•黔西南州)如圖,在Rt△ABC中,∠ACB=90°,點(diǎn)O是BC上一點(diǎn),以點(diǎn)O圓心,OC為半徑的圓交BC于點(diǎn)D,恰好與AB相切于點(diǎn)E.
(1)求證:AO是∠BAC的平分線;
(2)若BD=1cm,BE=3cm,求sinB及AC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,CD⊥AB于點(diǎn)D,BE⊥AC于點(diǎn)E,BE,CD交于點(diǎn)O,且AO平分∠BAC.
(1)求證:△ADO≌△AEO;
(2)猜想OB與OC的數(shù)量關(guān)系,并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案