如圖,已知△ABC是腰長(zhǎng)為1的等腰直角三形,以Rt△ABC的斜邊AC為直角邊,畫(huà)第二個(gè)等腰Rt△ACD,再以Rt△ACD的斜邊AD為直角邊,畫(huà)第三個(gè)等腰Rt△ADE,…,依此類(lèi)推,則第2013個(gè)等腰直角三角形的斜邊長(zhǎng)是________.

2013
分析:設(shè)等腰直角三角形一個(gè)直角邊為1,根據(jù)等腰直角三角形的斜邊長(zhǎng)為直角邊長(zhǎng)度的倍,可以發(fā)現(xiàn)n個(gè)△,直角邊是第(n-1)個(gè)△的斜邊長(zhǎng),即可求出斜邊長(zhǎng).
解答:設(shè)等腰直角三角形一個(gè)直角邊為1,
等腰直角三角形的斜邊長(zhǎng)為直角邊長(zhǎng)度的
第一個(gè)△(也就是Rt△ABC)的斜邊長(zhǎng):1×=;
第二個(gè)△,直角邊是第一個(gè)△的斜邊長(zhǎng),所以它的斜邊長(zhǎng):×=()2;

第n個(gè)△,直角邊是第(n-1)個(gè)△的斜邊長(zhǎng),其斜邊長(zhǎng)為:()n.
則第2013個(gè)等腰直角三角形的斜邊長(zhǎng)是:(2013
故答案為:(2013
點(diǎn)評(píng):此題主要考查學(xué)生對(duì)等腰直角三角形的理解和掌握,解答此題的關(guān)鍵是通過(guò)認(rèn)真分析,根據(jù)等腰直角三角形的斜邊長(zhǎng)為直角邊長(zhǎng)度的倍,從中發(fā)現(xiàn)規(guī)律.此題有一定的拔高難度,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知△ABC是邊長(zhǎng)為4的正三角形,AB在x軸上,點(diǎn)C在第一象限,AC與y軸交于點(diǎn)D,點(diǎn)A精英家教網(wǎng)的坐標(biāo)為(-1,0).
(1)寫(xiě)出B,C,D三點(diǎn)的坐標(biāo);
(2)若拋物線(xiàn)y=ax2+bx+c經(jīng)過(guò)B,C,D三點(diǎn),求此拋物線(xiàn)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知△ABC是等邊三角形,AB交⊙O于點(diǎn)D,DE⊥AC于點(diǎn)E.
(1)求證:DE為⊙O的切線(xiàn).
(2)已知DE=3,求:弧BD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知△ABC是等邊三角形,E是AC延長(zhǎng)線(xiàn)上一點(diǎn),選擇一點(diǎn)D,使得△CDE是等邊三角形,如果M是線(xiàn)段AD的中點(diǎn),N是線(xiàn)段BE的中點(diǎn),
求證:△CMN是等邊三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•襄城區(qū)模擬)如圖,已知△ABC是等邊三角形,D、E分別在邊BC、AC上,且CD=CE,連接DE并延長(zhǎng)至點(diǎn)F,使EF=AE,連接AF、BE和CF.
(1)求證:△BCE≌△FDC;
(2)判斷四邊形ABDF是怎樣的四邊形,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•奉賢區(qū)二模)如圖,已知△ABC是等邊三角形,點(diǎn)D是BC延長(zhǎng)線(xiàn)上的一個(gè)動(dòng)點(diǎn),以AD為邊作等邊△ADE,過(guò)點(diǎn)E作BC的平行線(xiàn),分別交AB,AC的延長(zhǎng)線(xiàn)于點(diǎn)F,G,聯(lián)結(jié)BE.
(1)求證:△AEB≌△ADC;
(2)如果BC=CD,判斷四邊形BCGE的形狀,并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案