【題目】如圖,已知動點P在函數(shù)y= (x>0)的圖象上運動,PM⊥x軸于點M,PN⊥y軸于點N,線段PM、PN分別與直線AB:y=﹣x+1交于點E,F(xiàn),則AFBE的值為( )

A.4
B.2
C.1
D.

【答案】C
【解析】解:作FG⊥x軸,
∵P的坐標為(a, ),且PN⊥OB,PM⊥OA,
∴N的坐標為(0, ),M點的坐標為(a,0),
∴BN=1﹣ ,
在直角三角形BNF中,∠NBF=45°(OB=OA=1,三角形OAB是等腰直角三角形),
∴NF=BN=1﹣
∴F點的坐標為(1﹣ , ),
同理可得出E點的坐標為(a,1﹣a),
∴AF2=(1﹣1+ 2+( 2= ,BE2=(a)2+(﹣a)2=2a2 ,
∴AF2BE2= 2a2=1,即AFBE=1.
故選C.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】一只小球落在數(shù)軸上的某點,第一次從向左跳1個單位到,第二次從向右跳2個單位到,第三次從向左跳3個單位到,第四次從向右跳4個單位到,若小球從原點出發(fā),按以上規(guī)律跳了6次時,它落在數(shù)軸上的點所表示的數(shù)是__________;若小球按以上規(guī)律跳了2n次時,它落在數(shù)軸上的點所表示的數(shù)恰好是,則這只小球的初始位置點所表示的數(shù)是__________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了迎接卓園藝術節(jié)的召開,現(xiàn)要從七、八年級學生中抽調人參加“校園集體舞”、“廣播體操”、“唱紅歌”等活動,其中參加“校園集體舞”人數(shù)是抽調人數(shù)的 還多3人,參加“廣播體操活動人數(shù)是抽調人數(shù)的 少2人,其余的參加“唱紅歌”活動,若抽調的每個學生只參加了一項活動.

(1)求參加“唱紅歌”活動的人數(shù).(用含的式子表示)

(2)求參加“廣播體操”比參加“校園集體舞”多的人數(shù).(用含的式子表示)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知△ABC中,AB=AC,把△ABC繞A點沿順時針方向旋轉得到△ADE,連接BD,CE交于點F.
(1)求證:△AEC≌△ADB;
(2)若AB=2,∠BAC=45°,當四邊形ADFC是菱形時,求BF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某地生產(chǎn)一種綠色蔬菜,若在市場上直接銷售,每噸利潤為1 000元;經(jīng)粗加工后銷售,每噸利潤可達4 500元;經(jīng)精加工后銷售,每噸利潤漲至7 500元.

當?shù)匾患沂卟斯臼斋@這種蔬菜140噸,該公司加工廠的生產(chǎn)能力是:如果對蔬菜進行粗加工,每天可加工16噸;如果進行精加工,每天可加工6噸,但兩種加工方式不能同時進行,受季節(jié)等條件限制,公司必須在15天內將這批蔬菜全部銷售或加工完畢,為此公司制訂了三種方案:

方案一:將蔬菜全部進行粗加工;

方案二:盡可能多的對蔬菜進行精加工,沒有來得及進行加工的蔬菜,在市場上直接銷售;

方案三:將部分蔬菜進行精加工,其余蔬菜進行粗加工,并恰好15天完成.

你認為選擇哪種方案獲利最多?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知A=3a2b2ab2+abc,小明同學錯將“2A﹣B“看成”2A+B“,算得結果為4a2b3ab2+4abc

(1)計算B的表達式;

(2)求出2AB的結果;

(3)小強同學說(2)中的結果的大小與c的取值無關,對嗎?若a=,b=,

(2)中式子的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】□ABCD中,AC=6,BD=10,動點P從B出發(fā)以每秒1個單位的速度沿射線BD勻速運動,動點Q從D出發(fā)以相同速度沿射線DB勻速運動,設運動時間為t秒.

(1)當t =2時,證明以A、P、C、Q為頂點的四邊形是平行四邊形.

(2)當以A、P、C、Q為頂點的四邊形為矩形時,直接寫出t的值.

(3)設PQ=y,直接寫出y與t的函數(shù)關系式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】完成下面的證明過程

如圖,已知∠1+∠2=180°,∠B=∠DEF,求證:DE∥BC.

證明:∵∠1+∠2=180°(已知),

∠2=∠3________,

∴∠1+∠3=180°

____________________

∴∠B=______________

∵∠B=∠DEF(已知)

∴∠DEF=______(等量代換)

∴DE∥BC________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,,OC平分,C為角平分線上一點,過點C,垂足為C,交OB于點D,OB于點E.

判斷的形狀,并說明理由;

,求CD的長.

查看答案和解析>>

同步練習冊答案