【題目】已知:如圖,一塊Rt△ABC的綠地,量得兩直角邊AC=8cm,BC=6cm.現(xiàn)在要將這塊綠地擴充成等腰△ABD,且擴充部分(△ADC)是以8cm為直角邊長的直角三角形,求擴充等腰△ABD的周長.
(1)在圖1中,當AB=AD=10cm時,△ABD的周長為 .
(2)在圖2中,當BA=BD=10cm時,△ABD的周長為 .
(3)在圖3中,當DA=DB時,求△ABD的周長.
【答案】(1)32m;(2)(20+4)m;(3)
【解析】
(1)利用勾股定理得出DC的長,進而求出△ABD的周長;
(2)利用勾股定理得出AD的長,進而求出△ABD的周長;
(3)首先利用勾股定理得出DC、AB的長,進而求出△ABD的周長.
:(1)如圖1,∵AB=AD=10m,AC⊥BD,AC=8m,
∴
則△ABD的周長為:10+10+6+6=32(m).
故答案為:32m;
(2)如圖2,當BA=BD=10m時,
則DC=BD-BC=10-6=4(m),
故
則△ABD的周長為:AD+AB+BD=10+4+10=(20+4)m;
故答案為:(20+4)m;
(3)如圖3,∵DA=DB,
∴設(shè)DC=xm,則AD=(6+x)m,
∴DC2+AC2=AD2,
即x2+82=(6+x)2,
解得;x=
∵AC=8m,BC=6m,
∴AB=10m,
故△ABD的周長為:AD+BD+AB=2
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點P為某個封閉圖形邊界上的一定點,動點M從點P出發(fā),沿其邊界順時針勻速運動一周,設(shè)點M的運動時間為x,線段PM的長度為y,表示y與x的函數(shù)圖象大致如圖所示,則該封閉圖形可能是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】勾股定理是人類最偉大的科學(xué)發(fā)現(xiàn)之一,在我國古算書《周髀算經(jīng)》中早有記載.如圖1,以直角三角形的各邊為邊分別向外作正方形,再把較小的兩張正方形紙片按圖2的方式放置在最大正方形內(nèi).若知道圖中陰影部分的面積,則一定能求出( )
A.直角三角形的面積
B.最大正方形的面積
C.較小兩個正方形重疊部分的面積
D.最大正方形與直角三角形的面積和
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線PA是一次函數(shù)y=x+1的圖象,直線PB是一次函數(shù)y=-2x+2的圖象.
(1)求A、B、P三點的坐標;
(2)求四邊形PQOB的面積;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,對稱軸為直線.下列結(jié)論中,正確的是( 。
A. abc>0 B. a+b=0 C. 2b+c>0 D. 4a+c<2b
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場以每件42元的價格購進一種服裝,由試銷知,每天的銷量t與每件的銷售價x(元)之間的函數(shù)關(guān)系為t=204-3x。
(1)試寫出每天銷售這種服裝的毛利潤y(元)與每件銷售價x(元)之間的函數(shù)表達式(毛利潤=銷售價-進貨價); 并求出自變量的取值范圍。
(2)每件銷售價為多少元,才能使每天的毛利潤最大?最大毛利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1是一個長為、寬為的長方形,沿圖中虛線用剪刀平均分成四塊小長方形,然后用四塊小長方形拼成一個“回形”正方形(如圖2)
(1)觀察圖2請你寫出、、之間的等量關(guān)系是______;
(2)根據(jù)(1)中的結(jié)論,若,,則______;
(3)拓展應(yīng)用:若,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知⊙O的半徑為1,AC是⊙O的直徑,過點C作⊙O的切線BC,E是BC的中點,AB交⊙O于D點.
(1)直接寫出ED和EC的數(shù)量關(guān)系:_________;
(2)DE是⊙O的切線嗎?若是,給出證明;若不是,說明理由;
(3)填空:當BC=_______時,四邊形AOED是平行四邊形,同時以點O、D、E、C為頂點的四邊形是_______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com