精英家教網 > 初中數學 > 題目詳情
如圖,已知二次函數y=ax2+bx+c的圖象的形狀與拋物線y=-
1
2
x2+1的形狀相同,且經過A(2,0)、B(0,-6)兩點.
(1)求這個二次函數的解析式;
(2)設該二次函數的對稱軸與x軸交于點C,連接BA、BC,求△ABC的面積.
(1)∵二次函數y=ax2+bx+c的圖象的形狀與拋物線y=-
1
2
x2+1的形狀相同,拋物線開口向下,
∴a=-
1
2

∵經過A(2,0)、B(0,-6)兩點,
-
1
2
×4+2b+c=0
c=-6
,
解得
b=4
c=-6
,
∴這個二次函數的解析式為y=-
1
2
x2+4x-6;

(2)令y=0,得-
1
2
x2+4x-6=0,
解得x=2或6,
由圖知:點C的坐標(4,0),
∴S△ABC=
1
2
AC•點B縱坐標的絕對值=
1
2
×2×6=6.
練習冊系列答案
相關習題

科目:初中數學 來源:不詳 題型:解答題

如圖,二次函數y=ax2+bx+c的圖象與x軸交于點A(1,0)和點B(點B在點A右側),與y軸交于點C(0,2).
(1)請說明a、b、c的乘積是正數還是負數;
(2)若∠OCA=∠CBO,求這個二次函數的解析式.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

用長為24米的籬笆,一面利用10米的墻,圍成一個中間隔有一道籬笆的長方形花園.設花園的寬AB為x米,面積為y米2
(1)求y與x之間的函數關系式
(2)當寬AB為多少是,圍成面積最大?

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,已知:拋物線y=ax2+bx-4(a≠0)與x軸交于A、B兩點,與y軸交于點C,A、B兩點的坐標分別為A(-6,0)、B(2,0).
(1)求這條拋物線的函數表達式;
(2)已知在拋物線的對稱軸上存在一點P,使得PB+PC的值最小,請求出點P的坐標;
(3)若點D是線段OC上的一個動點(不與點O、點C重合).過點D作DEPC交x軸于點E.連接PD、PE.設CD的長為m,△PDE的面積為S.求S與m之間的函數關系式.試說明S是否存在最大值?若存在,請求出最大值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

在學校田徑運動會上,九年級的一名高個子男生拋實心球,已知實心球所經過的路線是某個二次函數圖象的一部分,如圖所示,如果這個男生的拋球處A點坐標為(0,2),實心球在空中線路的最高點B點的坐標是(6,5).
(1)求這個二次函數解析式;
(2)若拋出13.5米或大于13.5米遠為“好成績”,問該男生在這次拋擲中,能取得“好成績”嗎?試通過計算說明.(
15
≈3.873)

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖所示的直角坐標系中,若△ABC是等腰直角三角形,AB=AC=8
2
,D為斜邊BC的中點.點P由點A出發(fā)沿線段AB作勻速運動,P′是P關于AD的對稱點;點Q由點D出發(fā)沿射線DC方向作勻速運動,且滿足四邊形QDPP′是平行四邊形.設平行四邊形QDPP′的面積為y,DQ=x.
(1)求出y關于x的函數解析式;
(2)求當y取最大值時,過點P,A,P′的二次函數解析式;
(3)能否在(2)中所求的二次函數圖象上找一點E使△EPP′的面積為20?若存在,求出E點坐標;若不存在,說明理由.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖①,梯形ABCD中,∠C=90°.動點E、F同時從點B出發(fā),點E沿折線BA-AD-DC運動到點C時停止運動,點F沿BC運動到點C時停止運動,它們運動時的速度都是1cm/s.設E、F出發(fā)ts時,△EBF的面積為ycm2.已知y與t的函數圖象如圖②所示,其中曲線OM為拋物線的一部分,MN、NP為線段.請根據圖中的信息,解答下列問題:
(1)梯形上底的長AD=______cm,梯形ABCD的面積______cm2;
(2)當點E在BA、DC上運動時,分別求出y與t的函數關系式(注明自變量的取值范圍);
(3)當t為何值時,△EBF與梯形ABCD的面積之比為1:2?

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

王亮同學善于改進學習方法,他發(fā)現對解題過程進行回顧反思,效果會更好.某一天他利用30分鐘時間進行自主學習.假設他用于解題的時間x(單位:分鐘)與學習收益量y的關系如圖甲所示,用于回顧反思的時間x(單位:分鐘)與學習收益量y的關系如圖乙所示(其中OA是拋物線的一部分,A為拋物線的頂點),且用于回顧反思的時間不超過用于解題的時間.

(1)求王亮解題的學習收益量y與用于解題的時間x之間的函數關系式,并寫出自變量x的取值范圍;
(2)求王亮回顧反思的學習收益量y與用于回顧反思的時間x之間的函數關系式;
(3)王亮如何分配解題和回顧反思的時間,才能使這30分鐘的學習收益總量最大?
(學習收益總量=解題的學習收益量+回顧反思的學習收益量)

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

我市有一種可食用的野生菌,上市時,某經銷公司按市場價格30元/千克收購了這種野生菌1000千克存放入冷庫中,據預測,該野生菌的市場價格y(元)與存放天數x(天)之間的部分對應值如下表所示:
存放天數x(天)246810
市場價格y(元)3234363840
但冷凍存放這批野生菌時每天需要支出各種費用合計310元,而且這類野生菌在冷庫中最多保存110天,同時,平均每天有3千克的野生菌損壞不能出售.
(1)請你從所學過的一次函數、二次函數和反比例函數中確定哪種函數能表示y與x的變化規(guī)律,并直接寫出y與x之間的函數關系式;若存放x天后,將這批野生茵一次性出售,設這批野生菌的銷售總額為P元,試求出P與x之間的函數關系式;
(2)該公司將這批野生菌存放多少天后出售可獲得最大利潤w元并求出最大利潤.(利潤=銷售總額-收購成本-各種費用)
(3)該公司以最大利潤將這批野生菌一次性出售的當天,再次按市場價格收購這種野生1180千克,存放入冷庫中一段時間后一次性出售,其它條件不變,若要使兩次的總盈利不低于4.5萬元,請你確定此時市場的最低價格應為多少元?(結果精確到個位,參考數據:
14
≈3.742,
1.4
≈1.183

查看答案和解析>>

同步練習冊答案