如圖,點B、C在線段AD上,點M是線段AB的中點,點N是線段CD的中點,若MNm,BCn,則AD的長是多少?

答案:
解析:

  分析:本題若先求出每段線段的長度再相加,顯然不妥,但若運用整體思想巧妙轉化,則問題即可獲解.

  解:ADAMMBBCCNND2(MBCN)BC2(MNBC)BC2(mn)n2mn

  點評:巧妙轉化是解題的關鍵.首先將線段AD轉化為五條線段的和,然后通過線段中點的等量關系進行替換,將未知線段轉化為已知線段,進而求解.


練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

25、如圖,點C、D在線段AB上,△PCD是等邊三角形.
(1)當AC、CD、DB滿足怎樣的關系時,△ACP∽△PDB;
(2)當△ACP∽△PDB時,求∠APB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

13、如圖,點D,E分別在線段AB,AC上,BE,CD相交于點O,AE=AD,要使△ABE≌△ACD,需添加一個條件是
∠ADC=∠AEB或∠B=∠C或AB=AC或∠BDO=∠CEO
(只要寫一個條件).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•郴州)如圖,點D、E分別在線段AB,AC上,AE=AD,不添加新的線段和字母,要使△ABE≌△ACD,需添加的一個條件是
∠B=∠C(答案不唯一)
∠B=∠C(答案不唯一)
(只寫一個條件即可).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,點C,D在線段AB上,AC=
1
3
AB,CD=
1
2
CB,若AB=3,則圖中所有線段長的和是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,點C、D在線段AB上,AC=
13
BC
,D是BC的中點,CD=4.5,求線段AB的長.

查看答案和解析>>

同步練習冊答案