【題目】如圖,Rt△ABC中,∠ACB=90°,cosA=,D為AB上一點(diǎn),且AD:BD=1:2,若BC=3,求CD的長(zhǎng).
【答案】.
【解析】
試題分析:過(guò)D作DE⊥AC于E,則DE∥BC.先在Rt△ABC中,由cosA=,可設(shè)AC=5k,則AB=6k,利用勾股定理得出AB2﹣AC2=BC2,求出k=±3(負(fù)值舍去),那么AC=15,AB=18.再由DE∥BC,得出,求出DE=BC=,AE=AC=5,CE=AC﹣AE=10,然后利用勾股定理得出CD=.
試題解析:過(guò)D作DE⊥AC于E,則DE∥BC.
∵Rt△ABC中,∠ACB=90°,
∴cosA=,
∴設(shè)AC=5k,則AB=6k,
∵AB2﹣AC2=BC2,
∴36k2﹣25k2=99,
∴k=±3(負(fù)值舍去),
∴AC=15,AB=18.
∵DE∥BC,
∴,
∴DE=BC=,AE=AC=5,
∴CE=AC﹣AE=10,
∴CD=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列調(diào)查中,適宜采用全面調(diào)查(普查)方式的是( 。
A. 調(diào)查市場(chǎng)上老酸奶的質(zhì)量情況
B. 調(diào)查某品牌圓珠筆芯的使用壽命
C. 調(diào)查乘坐飛機(jī)的旅客是否攜帶了危禁物品
D. 調(diào)查我市市民對(duì)倫敦奧運(yùn)會(huì)吉祥物的知曉率
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD的對(duì)角線AC與BD相交于點(diǎn)O,E為BD上的一點(diǎn),連接EA,將EA繞點(diǎn)E逆時(shí)針旋轉(zhuǎn)90°得線段EF,連接FB.
(1)如圖a,點(diǎn)E在OB上,
①求∠FEB+∠BAE的度數(shù);
②求證:ED﹣EB=BF;
(2)如圖b,當(dāng)E在OD上時(shí),按已知條件補(bǔ)全圖形,直接寫(xiě)出ED、EB、BF三條線段的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線y=﹣x2+bx+c與坐標(biāo)軸分別交于點(diǎn)點(diǎn)A(0,8)、B(8,0)和點(diǎn)E,動(dòng)點(diǎn)C從原點(diǎn)O開(kāi)始沿OA方向以每秒1個(gè)單位長(zhǎng)度移動(dòng),動(dòng)點(diǎn)D從點(diǎn)B開(kāi)始沿BO方向以每秒1個(gè)單位長(zhǎng)度移動(dòng),動(dòng)點(diǎn)C、D同時(shí)出發(fā),當(dāng)動(dòng)點(diǎn)D到達(dá)原點(diǎn)O時(shí),點(diǎn)C、D停止運(yùn)動(dòng).
(1)求該拋物線的解析式及點(diǎn)E的坐標(biāo);
(2)若D點(diǎn)運(yùn)動(dòng)的時(shí)間為t,△CED的面積為S,求S關(guān)于t的函數(shù)關(guān)系式,并求出△CED的面積的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】生活中都把自行車(chē)的幾根梁做成三角形的支架,這是因?yàn)槿切尉哂?/span>_______性.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,為了測(cè)量某電線桿(底部可到達(dá))的高度,準(zhǔn)備了如下的測(cè)量工具:
①平面鏡;②皮尺;③長(zhǎng)為2米的標(biāo)桿;④高為1.5m的測(cè)角儀(測(cè)量仰角、俯角的儀器),請(qǐng)根據(jù)你所設(shè)計(jì)的測(cè)量方案,回答下列問(wèn)題:
(1)畫(huà)出你的測(cè)量方案示意圖,并根據(jù)你的測(cè)量方案寫(xiě)出你所選用的測(cè)量工具;
(2)結(jié)合你的示意圖,寫(xiě)出求電線桿高度的思路.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠BAC=90°,AB=3,AC=4,P為邊BC上一動(dòng)點(diǎn),PE⊥AB于E,PF⊥AC于F,M為EF的中點(diǎn),則PM的最小值為( )
A.1.2 B.1.3 C.1.4 D.2.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】到三角形三個(gè)頂點(diǎn)的距離相等的點(diǎn)一定是( 。
A. 三邊垂直平分線的交點(diǎn) B. 三條高的交點(diǎn)
C. 三條中線的交點(diǎn) D. 三條角平分線的交點(diǎn)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com