【題目】鹽阜人民商場(chǎng)經(jīng)營某種品牌的服裝,購進(jìn)時(shí)的單價(jià)是元,根據(jù)市場(chǎng)調(diào)查:在一段時(shí)間內(nèi),銷售單價(jià)是元時(shí),銷售量是件,而銷售單價(jià)每漲元,就會(huì)少售出件服裝.
設(shè)該種品牌服裝的銷售單價(jià)為元,銷售量為件,請(qǐng)寫出與之間的函數(shù)關(guān)系式;
若商場(chǎng)獲得了元銷售利潤,該服裝銷售單價(jià)應(yīng)定為多少元?
在問條件下,若該商場(chǎng)要完成不少于件的銷售任務(wù),求商場(chǎng)銷售該品牌服裝獲得的最大利潤是多少?
【答案】(1) ;(2) 定為60元或70元;(3)最大利潤是5250元.
【解析】
(1)直接利用銷售單價(jià)是50元時(shí),銷售量是400件,而銷售單價(jià)每漲1元,就會(huì)少售出10件服裝得出y與x值間的關(guān)系;
(2)利用銷量×每件利潤=6000,進(jìn)而求出答案;
(3)利用銷量×每件利潤=總利潤,再利用該商場(chǎng)要完成不少于350件的銷售任務(wù)得出x的取值范圍,進(jìn)而得出二次函數(shù)最值.
解:(1)由題意可得:;
(2)由題意可得:,
整理得:,
解得:,,
答:服裝銷售單價(jià)應(yīng)定為元或元時(shí),商場(chǎng)可獲得元銷售利潤;
設(shè)利潤為,則
,
∵,對(duì)稱軸是直線,
,
解得:,
∴當(dāng)時(shí),隨增大而增大,
∴當(dāng)時(shí),(元),
答:商場(chǎng)銷售該品牌服裝獲得的最大利潤是元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,反比例函數(shù)y1=的圖象與一次函數(shù)y2=的圖象交于點(diǎn)A,B,點(diǎn)B的橫坐標(biāo)實(shí)數(shù)4,點(diǎn)P(1,m)在反比例函數(shù)y1=的圖象上.
(1)求反比例函數(shù)的表達(dá)式;
(2)觀察圖象回答:當(dāng)x為何范圍時(shí),y1>y2;
(3)求△PAB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)的圖象經(jīng)過點(diǎn)(2,3),頂點(diǎn)坐標(biāo)(1,4)
(1)求該二次函數(shù)的解析式;
(2)圖象與x軸的交點(diǎn)為A、B,與y軸的交點(diǎn)為C,求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)(a、b、c為常數(shù)且a≠0)中的x與y的部分對(duì)應(yīng)值如下表:
x | ﹣3 | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | 4 | 5 |
y | 12 | 5 | 0 | ﹣3 | ﹣4 | ﹣3 | 0 | 5 | 12 |
給出了結(jié)論:
(1)二次函數(shù)有最小值,最小值為﹣3;
(2)當(dāng)時(shí),y<0;
(3)二次函數(shù)的圖象與x軸有兩個(gè)交點(diǎn),且它們分別在y軸兩側(cè).
則其中正確結(jié)論的個(gè)數(shù)是
A. 3 B. 2 C. 1 D. 0
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:把Rt△ABC和Rt△DEF按如圖1擺放(點(diǎn)C與點(diǎn)E重合),點(diǎn)B、C(E)、F在同一條直線上,∠ACB=∠EDF=90°,∠DEF=45°,AC=8cm,BC=6cm,EF=9cm,如圖2,△DEF從圖1的位置出發(fā),以1cm/s的速度沿CB向△ABC勻速移動(dòng),在△DEF移動(dòng)的同時(shí),點(diǎn)P從△ABC的頂點(diǎn)B出發(fā),以2cm/s的速度沿BA向點(diǎn)A勻速移動(dòng).當(dāng)△DEF的頂點(diǎn)D移動(dòng)到AC邊上時(shí),△DEF停止移動(dòng),點(diǎn)P也隨之停止移動(dòng).DE與AC相交于點(diǎn)Q,連接PQ,設(shè)移動(dòng)時(shí)間為t(s)(0<t<4.5).解答下列問題:
(1)用含t的代數(shù)式表示線段AP= ;
(2)當(dāng)t為何值時(shí),點(diǎn)E在∠A的平分線上?
(3)當(dāng)t為何值時(shí),點(diǎn)A在線段PQ的垂直平分線上?
(4)連接PE,當(dāng)t=1(s)時(shí),求四邊形APEC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】當(dāng)你站在博物館的展覽廳中時(shí),你知道站在何處觀賞最理想嗎?如圖,設(shè)墻壁上的展品最高點(diǎn)P距地面2.5米,最低點(diǎn)Q距地面2米,觀賞者的眼睛F距地面1.6米,當(dāng)視角∠PEQ最大時(shí),站在此處觀賞最理想,則此時(shí)E到墻壁的距離為( )米.
A. 1 B. 0.6 C. 0.5 D. 0.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲乙兩位同學(xué)用圍棋子做游戲.如圖所示,現(xiàn)輪到黑棋下子,黑棋下一子后白棋再下一子,使黑棋的個(gè)棋子組成軸對(duì)稱圖形,白棋的個(gè)棋子也成軸對(duì)稱圖形.則下列下子方法不正確的是( ),.
A. 黑(3,7);白(5,3) B. 黑(4,7);白(6,2)
C. 黑(2,7);白(5,3) D. 黑(3,7);白(2,6)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,點(diǎn)P是邊上的動(dòng)點(diǎn)(不與點(diǎn)A,B重合).把沿過點(diǎn)P的直線l折疊,點(diǎn)B的對(duì)應(yīng)點(diǎn)是點(diǎn)D,折痕為.
(1)若點(diǎn)D恰好在邊上.
①如圖1,當(dāng)時(shí),連結(jié),求證:.
②如圖2,當(dāng),且,,求與的周長差.
(2)如圖3,點(diǎn)P在邊上運(yùn)動(dòng)時(shí),若直線l始終垂直于,的面積是否變化?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,中,,點(diǎn)、分別是、的中點(diǎn),過點(diǎn)作交線段的延長線于點(diǎn),取的中點(diǎn),聯(lián)結(jié),與交于點(diǎn).
求證:四邊形是菱形;
求證:.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com