【題目】如圖為二次函數(shù)y=ax2+bx+c的圖象,在下列說法中:①ac<0;②方程ax2+bx+c=0的根是x1=﹣1,x2=3;③a+b+c<0;④當(dāng)x>1時,y隨x的增大而減;⑤2a﹣b=0;⑥b2﹣4ac>0.下列結(jié)論一定成立的是( )
A. ①②④⑥ B. ①②③⑥ C. ②③④⑤⑥ D. ①②③④
【答案】B
【解析】
根據(jù)二次函數(shù)圖象和性質(zhì)可以判斷各個小題中的結(jié)論是否成立,從而可以解答本題.
根據(jù)圖像分析,拋物線向上開口,a>0;拋物線與y軸交點在y軸的負(fù)半軸,c<0;坐標(biāo)軸在右邊,根據(jù)左同右異,可知b與a異號,b<0;與坐標(biāo)軸有兩個交點,那么△>0,根據(jù)這些信息再結(jié)合函數(shù)性質(zhì)判斷即可.
解:
①由圖象可得,a>0,c<0,∴ac<0,故①正確,
②方程當(dāng)y=0時,代入y=ax2+bx+c,求得根是x1=-1,x2=3,故②正確,
③當(dāng)x=1時,y=a+b+c<0,故③正確,
④∵該拋物線的對稱軸是直線x=
∴當(dāng)x>1時,y隨x的增大而增大,故④錯誤,
⑤則2a=-b,那么2a+b=0,故⑤錯誤,
⑥∵拋物線與x軸兩個交點,∴b2-4ac>0,故⑥正確,
故正確的為. ①②③⑥選:B.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某區(qū)域為響應(yīng)“綠水青山就是金山銀山”的號召,加強了綠化建設(shè).為了解該區(qū)域群眾對綠化建設(shè)的滿意程度,某中學(xué)數(shù)學(xué)興趣小組在該區(qū)域的甲、乙兩個片區(qū)進(jìn)行了調(diào)查,得到如下不完整統(tǒng)計圖.
請結(jié)合圖中信息,解決下列問題:
(1)此次調(diào)查中接受調(diào)查的人數(shù)為多少人,其中“非常滿意”的人數(shù)為多少人;
(2)興趣小組準(zhǔn)備從“不滿意”的4位群眾中隨機選擇2位進(jìn)行回訪,已知這4位群眾中有2位來自甲片區(qū),另2位來自乙片區(qū),請用畫樹狀圖或列表的方法求出選擇的群眾來自甲片區(qū)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在同一平面直角坐標(biāo)系中,函數(shù)y=ax+b與y=ax2﹣bx的圖象可能是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程x2+(2k-1)x+k2=0有兩個實根x1和x2
(1) 求實數(shù)k的取值范圍
(2) 若方程兩實根x1、x2滿足x12-x22=0,求k的值
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點C為⊙O上一點,AE和過點C的切線互相垂直,垂足為E,AE交⊙O于點D,直線EC交AB的延長線于點P,連接AC、BC.
(1)求證:AC平分∠BAD.
(2)求證:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為美化校園,計劃對某一區(qū)域進(jìn)行綠化,安排甲.乙 兩個工程隊完成;已知甲隊每天能完成綠化面積是乙隊每天能完成綠化面積的2倍,并且在獨立完成面積為400 區(qū)域的綠化時,甲隊比乙隊少用4天,求甲.乙兩工程隊每天能完成綠化的面積分別是多少.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,為了測量山坡上一棵樹PQ的高度,小明在點A處利用測角儀測得樹頂P的仰角為450 ,然后他沿著正對樹PQ的方向前進(jìn)10m到達(dá)B點處,此時測得樹頂P和樹底Q的仰角分別是600和300,設(shè)PQ垂直于AB,且垂足為C.
(1)求∠BPQ的度數(shù);
(2)求樹PQ的高度(結(jié)果精確到0.1m, )
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com