科目:初中數(shù)學 來源: 題型:044
提出問題:如圖①,在四邊形ABCD中,P是AD邊上任意一點,△PBC與△ABC和△DBC的面積之間有什么關系?
探究發(fā)現(xiàn):為了解決這個問題,我們可以先從一些簡單的、特殊的情形入手:
(1
)當AP=AD時(如圖②):∵AP=AD,△ABP和△ABD的高相等,
∴S△ABP=S△ABD .
∵PD=AD-AP=AD,△CDP和△CDA的高相等,
∴S△CDP=S△CDA .
∴S△PBC =S四邊形ABCD-S△ABP-S△CDP
=S四邊形ABCD-S△ABD-S△CDA
=S四邊形ABCD-(S四邊形ABCD-S△DBC)-(S四邊形ABCD-S△ABC)
=S△DBC+S△ABC .
(2
)當AP=AD時,探求S△PBC與S△ABC和S△DBC之間的關系,寫出求解過程;(3
)當AP=AD時,S△PBC與S△ABC和S△DBC之間的關系式為:________________;(4
)一般地,當AP=AD(n表示正整數(shù))時,探求S△PBC與S△ABC和S△DBC之間的關系,寫出求解過程;問題解決:當AP=AD(0≤≤1)時,S△PBC與S△ABC和S△DBC之間的關系式為:___________.
查看答案和解析>>
科目:初中數(shù)學 來源:廣東省汕頭市金平區(qū)2011屆九年級畢業(yè)模擬考試數(shù)學試題 題型:044
閱讀材料并解答問題:
與正三角形各邊都相切的圓叫做正三角形的內(nèi)切圓,與正四邊形各邊都相切的圓叫做正四邊形的內(nèi)切圓,…,與正n邊形各邊都相切的圓叫做正n邊形的內(nèi)切圓,設正n(n≥3)邊形的面積為S正n邊形,其內(nèi)切圓的半徑為r,試探索正n邊形的面積.(結(jié)果可用三角函數(shù)表示)
如圖①,當n=3時,設AB切圓O于點C,連結(jié)OC,OA,OB,
∴OC⊥AB,OA=OB,∴∠AOC=AOB,AB=2BC.
在Rt△AOC中,,OC=r,
∴AC=r·tan60°,AB=2r·tan60°,
∴S△OAB=·r·2rtan60°=r2tan60°,
∴S正三角形=3S△OAB=3r2·tan60°.
(1)如圖②,當n=4時,仿照(1)中的方法和過程可求得:S正四邊形=________;
(2)如圖③,當n=5時,仿照(1)中的方法和過程求S正五邊形;
(3)如圖④,根據(jù)以上探索過程,請直接寫出S正n邊形________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
(6分)桌生產(chǎn)廠家研究發(fā)現(xiàn),傾斜12°~24°的桌面有利于學生保持軀體自然姿勢.根據(jù)這一研究,廠家決定將水平桌面做成可調(diào)節(jié)角度的桌面.新桌面的設計圖如圖1,AB可繞點A旋轉(zhuǎn),在點C處安裝一根可旋轉(zhuǎn)的支撐臂CD,AC=30cm.
(1)如圖2,當∠BAC=24°時,CD⊥AB,求支撐臂CD的長;
(2)如圖3,在(1)中 CD的長不變的情況下,當∠BAC=12°時,求AD的長.(結(jié)果保留根號)
(參考數(shù)據(jù): sin24°≈0.40,cos24°≈0.91,tan24°≈0.46, sin12°≈0.20)
查看答案和解析>>
科目:初中數(shù)學 來源:2012-2013學年江蘇省徐州市中考模擬數(shù)學試卷(B卷)(解析版) 題型:填空題
如果記y==f(x),并且f(1)表示當x=1時y的值,即f(1)==;f()表示當x=時y的值,即f()==;那么f(1)+f(2)+f()+f(3)+f()+…+f(2013)+f()= .
查看答案和解析>>
科目:初中數(shù)學 來源:2012屆江蘇省南京市初三課程結(jié)束考試數(shù)學卷 題型:選擇題
(6分)桌生產(chǎn)廠家研究發(fā)現(xiàn),傾斜12°~24°的桌面有利于學生保持軀體自然姿勢.根據(jù)這一研究,廠家決定將水平桌面做成可調(diào)節(jié)角度的桌面.新桌面的設計圖如圖1,AB可繞點A旋轉(zhuǎn),在點C處安裝一根可旋轉(zhuǎn)的支撐臂CD,AC=30cm.
(1)如圖2,當∠BAC=24°時,CD⊥AB,求支撐臂CD的長;
(2)如圖3,在 (1)中 CD的長不變的情況下,當∠BAC=12°時,求AD的長.(結(jié)果保留根號)
(參考數(shù)據(jù): sin24°≈0.40,cos24°≈0.91,tan24°≈0.46, sin12°≈0.20)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com