精英家教網(wǎng)如圖,在菱形ABCD中,點(diǎn)E是AB上的一點(diǎn),連接DE交AC于點(diǎn)O,連接BO,且∠AED=50°,則∠CBO=
 
度.
分析:根據(jù)兩直線(xiàn)平行,內(nèi)錯(cuò)角相等∠CDO=∠AED,再根據(jù)菱形的性質(zhì)CD=CB,∠BCO=∠DCO,所以△BCO與△DCO全等,根據(jù)全等三角形對(duì)應(yīng)角相等即可求出∠CBO的度數(shù).
解答:解:在菱形ABCD中,
AB∥CD,∴∠CDO=∠AED=50°,
CD=CB,∠BCO=∠DCO,
∴在△BCO和△DCO中,
CD=CB
∠BCO=∠DCO
CO=CO
,
∴△BCO≌△DCO(SAS),
∴∠CBO=∠CDO=50°.
故答案為50.
點(diǎn)評(píng):本題考查點(diǎn)較多,有菱形的對(duì)邊平行,菱形的鄰邊相等的性質(zhì),菱形的對(duì)角線(xiàn)平分一組對(duì)角的性質(zhì),三角形全等的判定和全等三角形對(duì)應(yīng)角相等的性質(zhì),熟練掌握各性質(zhì)是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖:在菱形ABCD中,AC=6,BD=8,則菱形的邊長(zhǎng)為(  )
A、5B、10C、6D、8

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在菱形ABCD中,∠ABC=60°,E為AB邊的中點(diǎn),P為對(duì)角線(xiàn)BD上任意一點(diǎn),AB=4,則PE+PA的最小值為
 
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•河南)如圖,在菱形ABCD中,AB=2,∠DAB=60°,點(diǎn)E是AD邊的中點(diǎn).點(diǎn)M是AB邊上一動(dòng)點(diǎn)(不與點(diǎn)A重合),延長(zhǎng)ME交射線(xiàn)CD于點(diǎn)N,連接MD、AN.
(1)求證:四邊形AMDN是平行四邊形;
(2)填空:①當(dāng)AM的值為
1
1
時(shí),四邊形AMDN是矩形;
           ②當(dāng)AM的值為
2
2
時(shí),四邊形AMDN是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•攀枝花)如圖,在菱形ABCD中,DE⊥AB于點(diǎn)E,cosA=
35
,BE=4,則tan∠DBE的值是
2
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在菱形ABCD中,AE⊥BC,垂足為F,EC=1,∠B=30°,求菱形ABCD的周長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案