【題目】解不等式組 請結(jié)合題意,完成本題的解答.
(1)解不等式①,得 , 依據(jù)是:
(2)解不等式③,得
(3)把不等式①,②和③的解集在數(shù)軸上表示出來.
(4)從圖中可以找出三個不等式解集的公共部分,得不等式組的解集

【答案】
(1)x≥﹣3;不等式的性質(zhì)3
(2)x<2
(3)解:如圖所示:


(4)﹣2<x<2
【解析】解:(1)解不等式①,得x≥﹣3,依據(jù)是:不等式的性質(zhì)3.(2)解不等式③,得x<2.(3)把不等式①,②和③的解集在數(shù)軸上表示出來. ⑷從圖中可以找出三個不等式解集的公共部分,得不等式組的解集為:﹣2<x<2,
所以答案是:(1)x≥﹣3、不等式的性質(zhì)3;(2)x<2;(4)﹣2<x<2.
【考點精析】掌握不等式的解集在數(shù)軸上的表示和一元一次不等式組的解法是解答本題的根本,需要知道不等式的解集可以在數(shù)軸上表示,分三步進行:①畫數(shù)軸②定界點③定方向.規(guī)律:用數(shù)軸表示不等式的解集,應(yīng)記住下面的規(guī)律:大于向右畫,小于向左畫,等于用實心圓點,不等于用空心圓圈;解法:①分別求出這個不等式組中各個不等式的解集;②利用數(shù)軸表示出各個不等式的解集;③找出公共部分;④用不等式表示出這個不等式組的解集.如果這些不等式的解集的沒有公共部分,則這個不等式組無解 ( 此時也稱這個不等式組的解集為空集 ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在下列圖形中,既是軸對稱圖形,又是中心對稱圖形的是(
A.直角三角形
B.正五邊形
C.正方形
D.等腰梯形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,AB=AD,CB=CD,對角線AC,BD相交于點O,下列結(jié)論中: ①∠ABC=∠ADC;
②AC與BD相互平分;
③AC,BD分別平分四邊形ABCD的兩組對角;
④四邊形ABCD的面積S= ACBD.
正確的是(填寫所有正確結(jié)論的序號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABOC的頂點O在坐標原點,頂點B,C分別在x,y軸的正半軸上,頂點A在反比例函數(shù)y= (k為常數(shù),k>0,x>0)的圖象上,將矩形ABOC繞點A按逆時針反向旋轉(zhuǎn)90°得到矩形AB′O′C′,若點O的對應(yīng)點O′恰好落在此反比例函數(shù)圖象上,則 的值是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形紙片ABCD中,已知AB=1,BC= ,點E在邊CD上移動,連接AE,將多邊形ABCE沿直線AE翻折,得到多邊形AB′C′E,點B、C的對應(yīng)點分別為點B′、C′.

(1)當B′C′恰好經(jīng)過點D時(如圖1),求線段CE的長;
(2)若B′C′分別交邊AD,CD于點F,G,且∠DAE=22.5°(如圖2),求△DFG的面積;
(3)在點E從點C移動到點D的過程中,求點C′運動的路徑長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,港口B位于港口A的南偏東37°方向,燈塔C恰好在AB的中點處,一艘海輪位于港口A的正南方向,港口B的正西方向的D處,它沿正北方向航行5km到達E處,測得燈塔C在北偏東45°方向上,這時,E處距離港口A有多遠?(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是正方形,△EBC是等邊三角形.
(1)求證:△ABE≌△DCE;
(2)求∠AED的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD與四邊形AECF都是菱形,點E、F在BD上.已知∠BAD=120°,∠EAF=30°,則 =

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,點A,B的坐標分別為(﹣3,0),(0,6).動點P從點O出發(fā),沿x軸正方向以每秒1個單位的速度運動,同時動點C從點B出發(fā),沿射線BO方向以每秒2個單位的速度運動,以CP,CO為鄰邊構(gòu)造PCOD,在線段OP延長線上取點E,使PE=AO,設(shè)點P運動的時間為t秒.

(1)當點C運動到線段OB的中點時,求t的值及點E的坐標;
(2)當點C在線段OB上時,求證:四邊形ADEC為平行四邊形;
(3)在線段PE上取點F,使PF=1,過點F作MN⊥PE,截取FM=2,F(xiàn)N=1,且點M,N分別在一,四象限,在運動過程中,設(shè)PCOD的面積為S.
①當點M,N中有一點落在四邊形ADEC的邊上時,求出所有滿足條件的t的值;
②若點M,N中恰好只有一個點落在四邊形ADEC的內(nèi)部(不包括邊界)時,直接寫出S的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案