分析 由平行四邊形的性質(zhì)可知:∠ABE=∠CDF,再利用已知條件和三角形全等的判定方法即可證明△ABE≌△CDF,所以∠AEB=∠DFC,進(jìn)而可得∠AED=∠BFC,所以AE∥CF.
解答 證明:∵AB=CD,AD=CB,
∴四邊形ABCD是平行四邊形,
∴AB∥DC,AB=CD,
∴∠ABE=∠CDF,
在△ABE和△CDF中,
∵$\left\{\begin{array}{l}{AB=CD}\\{∠ABE=∠CDF}\\{BE=DF}\end{array}\right.$,
∴△ABE≌△CDF(SAS),
∴∠AEB=∠DFC,AE=CF,
∴∠AED=∠BFC,
∴AE∥CF.
點評 本題考查了全等三角形的判定和性質(zhì),關(guān)鍵是根據(jù)平行四邊形的性質(zhì)、全等三角形的判定和性質(zhì)以及平行線的判定方法解答.
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 5 | B. | 6 | C. | 8 | D. | 7 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com