分析 (1)先根據完全平方公式和平方平方差公式展開,再合并即可;
(2)變形后提公因式,再用平方差公式分解即可;
(3)先算括號內的減法,再把除法變成乘法,化簡后代入求出即可.
解答 解:(1)原式=($\sqrt{2}$)2-2×$\sqrt{2}$×$\sqrt{3}$+($\sqrt{3}$)2+(2$\sqrt{3}$)2-($\sqrt{6}$)2
=2-2$\sqrt{6}$+3+12-6
=11-2$\sqrt{6}$;
(2)原式=9a2(x-y)-4b2(x-y)
=(x-y)(9a2-4b2)
=(x-y)(3a+2b)(3a-2b);
(3)$\frac{a-2}{{a}^{2}-1}$÷(a-1-$\frac{2a-1}{a+1}$)
=$\frac{a-2}{{a}^{2}-1}$÷$\frac{(a-1)(a+1)-(2a-1)}{a+1}$
=$\frac{a-2}{{a}^{2}-1}$÷$\frac{{a}^{2}-2a}{a+1}$
=$\frac{a-2}{(a+1)(a-1)}$•$\frac{a+1}{a(a-2)}$
=$\frac{1}{a(a-1)}$
=$\frac{1}{{a}^{2}-a}$,
∵a2-a-6=0,
∴a2-a=6,
∴原式=$\frac{1}{6}$.
點評 本題考查了分解因式,二次根式的混合運算,分式的混合運算和求值的應用,能熟記各個知識點是解此題的關鍵.
科目:初中數學 來源: 題型:選擇題
A. | 2 | B. | 4 | C. | $\sqrt{3}$ | D. | 2$\sqrt{3}$ |
查看答案和解析>>
科目:初中數學 來源: 題型:選擇題
A. | -3a | B. | -a+2b-2c | C. | 2b | D. | a |
查看答案和解析>>
科目:初中數學 來源: 題型:選擇題
A. | 35° | B. | 45° | C. | 55° | D. | 65° |
查看答案和解析>>
科目:初中數學 來源: 題型:填空題
查看答案和解析>>
科目:初中數學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com