如下圖,在△ABC中,∠B=600,∠C=400,AD⊥BC于D,AE平分∠BAC;則∠DAE=      
10°.

試題分析:∵△ABC中,∠B=60°,∠C=40°,
∴∠BAC=180°﹣∠B﹣∠C=180°﹣60°﹣40°=80°,
∵AE平分∠BAC,
∴∠CAE=∠BAC=×80°=40°,
∵AD⊥BC,
∴∠CAD=90°﹣∠C=90°﹣40°=50°,
∴∠DAE=∠CAD﹣∠CAE=50°﹣40°=10°.
故答案是10°.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

六邊形的外角和等于       度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,△ABC中,AD是BC上的高,AE平分∠BAC,∠B=75°,∠C=45°,求∠DAE與∠AEC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

已知等腰三角形兩條邊的長分別是3和6,則它的周長等于            

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

在△ABC中,點(diǎn)I是內(nèi)心,若∠A=40°,則∠BIC的度數(shù)為__________。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在△ABC中,D為AB邊上一點(diǎn)、F為AC的中點(diǎn),過點(diǎn)C作CE//AB交DF的延長線于點(diǎn)E,連結(jié)AE.
(1)求證:四邊形ADCE為平行四邊形.
(2)若EF=2,,求DC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖①,在矩形ABCD中,AB=5,AD=,AE⊥BD,垂足是E.點(diǎn)F是點(diǎn)E關(guān)于AB的對(duì)稱點(diǎn),連接AF、BF.
(1)求AE和BE的長;
(2)若將△ABF沿著射線BD方向平移,設(shè)平移的距離為m(平移距離指點(diǎn)B沿BD方向所經(jīng)過的線段長度).當(dāng)點(diǎn)F分別平移到線段AB、AD上時(shí),直接寫出相應(yīng)的m的值.
(3)如圖②,將△ABF繞點(diǎn)B順時(shí)針旋轉(zhuǎn)一個(gè)角(0°<<180°),記旋轉(zhuǎn)中的△ABF為△A′BF′,在旋轉(zhuǎn)過程中,設(shè)A′F′所在的直線與直線AD交于點(diǎn)P.與直線BD交于點(diǎn)Q.是否存在這樣的P、Q兩點(diǎn),使△DPQ為等腰三角形?若存在,求出此時(shí)DQ的長;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,△ABC中,∠BAC=100°,EF, MN分別為AB,AC的垂直平分線,如果BC="12" cm,那么△FAN的周長為        cm,∠FAN=         

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

已知下列命題:
①若a >0,b>0,則a+b>0;
②若a2≠b2,則a ≠b
③角平分線上的點(diǎn)到角兩邊的距離相等;
④平行四邊形的對(duì)角線互相平分
⑤直角三角形斜邊上的中線等于斜邊的一半。
其中原命題與逆命題均為真命題的是(   )
A.①③④B.①②④C.③④⑤D.②③⑤

查看答案和解析>>

同步練習(xí)冊(cè)答案