三等分任意角是一個(gè)作圖難題,在距第一次提出這個(gè)問(wèn)題兩千年之后,這個(gè)問(wèn)題才被證實(shí)用尺規(guī)作圖(用沒(méi)有刻度的直尺和圓規(guī)作圖)無(wú)法解決.現(xiàn)在有不少人創(chuàng)造了各種各樣的輔助工具,用來(lái)解決尺規(guī)作圖無(wú)法解決的三等分任意角的問(wèn)題.
如圖所示就是一個(gè)用來(lái)三等分任意角的工具及其使用示意圖.
(1)制作該工具時(shí)BE所在的直線、點(diǎn)C應(yīng)分別滿足什么條件?使用時(shí)應(yīng)注意些什么?
(2)你能說(shuō)出該工具三等分任意角的道理嗎?

【答案】分析:(1)由線段垂直平分線的性質(zhì),角平分線的性質(zhì)可知,BE垂直平分AC,點(diǎn)C為半圓的圓心;
(2)根據(jù)垂直平分線的點(diǎn)到線段兩端點(diǎn)距離相等,構(gòu)造等腰三角形,根據(jù)等腰三角形的性質(zhì)可知EB為角平分線,由圓的性質(zhì)可知CB=CF,可知C在角平分線上.
解答:解:
(1)BE垂直平分AC,C是BD的中點(diǎn);角的頂點(diǎn)落在BE上,使角的一邊經(jīng)過(guò)點(diǎn)A,另一邊于半圓相切.(3′)
(2)如圖,設(shè)被平分的角頂點(diǎn)為O點(diǎn),
∵BE垂直平分AC,∴OA=OC,∴∠AOB=∠BOC,
∵C是BD的中點(diǎn),∴CB=CF,且BC⊥OB,CF⊥OF,
∴∠BOC=∠FOC,
∴該工具能三等分任意角.
點(diǎn)評(píng):本題考查了線段垂直平分線的性質(zhì),角平分線性質(zhì)的運(yùn)用.關(guān)鍵是運(yùn)用兩個(gè)性質(zhì)得到相等角.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(1)“三等分角”是數(shù)學(xué)史上一個(gè)著名問(wèn)題,但數(shù)學(xué)家已經(jīng)證明,僅用尺規(guī)不可能“三等分任意角”.但對(duì)于特定度數(shù)的已知角,如90°角、45°角等,是可以用尺規(guī)進(jìn)行三等分的.如圖a,∠AOB=90°,我們?cè)谶匫B上取一點(diǎn)C,用尺規(guī)以O(shè)C為一邊向∠AOB內(nèi)部作等邊△OCD,作射線OD,再用尺規(guī)作出∠DOB的角平分線OE,則射線OD、OE將∠AOB三等分.仔細(xì)體會(huì)一下其中的道理,然后用尺規(guī)把圖b中的∠MON三等分(已知∠MON=45°).(不需寫(xiě)作法,但需保留作圖痕跡,允許適當(dāng)添加文字的說(shuō)明)
精英家教網(wǎng)
(2)數(shù)學(xué)家帕普斯借助函數(shù)給出了一種“三等分銳角”的方法(如圖c):將給定的銳角∠AOB置于直角坐標(biāo)系中,邊OB在x軸上、邊OA與函數(shù)y=
1
x
的圖象交于點(diǎn)P,以P為圓心、2OP長(zhǎng)為半徑作弧交圖象于點(diǎn)R.分別過(guò)點(diǎn)P和R作x軸和y軸的平行線,兩直線相交于點(diǎn)M,連接OM得到∠MOB,則∠MOB=
1
3
∠AOB.要明白帕普斯的方法,請(qǐng)研究以下問(wèn)題:
①設(shè)P(a,
1
a
)、R(b,
1
b
),求直線OM對(duì)應(yīng)的函數(shù)關(guān)系式(用含a、b的代數(shù)式表示).
②分別過(guò)點(diǎn)P和R作y軸和x軸的平行線,兩直線相交于點(diǎn)Q.請(qǐng)說(shuō)明Q點(diǎn)在直線OM上,并據(jù)此證明∠MOB=
1
3
∠AOB.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

三等分任意角是三大幾何作圖不能問(wèn)題之一,古希臘數(shù)學(xué)家阿基米德就設(shè)計(jì)出了一個(gè)巧妙的三等分角的方法:在直尺邊緣上添加一點(diǎn)P,命尺端為O(如圖①);設(shè)所要三等分的角是∠MCN,以C為圓心,OP為半徑作半圓交給定角的兩邊CM、CN于A、B兩點(diǎn);移動(dòng)直尺,使直尺上的O點(diǎn)在AC的延長(zhǎng)線上移動(dòng),P點(diǎn)在圓周上移動(dòng),當(dāng)直尺正好通過(guò)B點(diǎn)時(shí),連OPB,則有∠AOB=
13
∠MCN.這種方法由于在直尺上作了一個(gè)記號(hào),不符合尺規(guī)作圖中直尺只能用來(lái)連線的規(guī)定,因此還不能算是嚴(yán)格意義上的尺規(guī)作圖.
(1)動(dòng)手實(shí)踐操作,用以上方法三等分∠MCN,在圖②中畫(huà)出圖形并標(biāo)明相應(yīng)字母;
(2)請(qǐng)你就阿基米德的作圖方法給出證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年江蘇省無(wú)錫市江南中學(xué)中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

(1)“三等分角”是數(shù)學(xué)史上一個(gè)著名問(wèn)題,但數(shù)學(xué)家已經(jīng)證明,僅用尺規(guī)不可能“三等分任意角”.但對(duì)于特定度數(shù)的已知角,如90°角、45°角等,是可以用尺規(guī)進(jìn)行三等分的.如圖a,∠AOB=90°,我們?cè)谶匫B上取一點(diǎn)C,用尺規(guī)以O(shè)C為一邊向∠AOB內(nèi)部作等邊△OCD,作射線OD,再用尺規(guī)作出∠DOB的角平分線OE,則射線OD、OE將∠AOB三等分.仔細(xì)體會(huì)一下其中的道理,然后用尺規(guī)把圖b中的∠MON三等分(已知∠MON=45°).(不需寫(xiě)作法,但需保留作圖痕跡,允許適當(dāng)添加文字的說(shuō)明)

(2)數(shù)學(xué)家帕普斯借助函數(shù)給出了一種“三等分銳角”的方法(如圖c):將給定的銳角∠AOB置于直角坐標(biāo)系中,邊OB在x軸上、邊OA與函數(shù)y=的圖象交于點(diǎn)P,以P為圓心、2OP長(zhǎng)為半徑作弧交圖象于點(diǎn)R.分別過(guò)點(diǎn)P和R作x軸和y軸的平行線,兩直線相交于點(diǎn)M,連接OM得到∠MOB,則∠MOB=∠AOB.要明白帕普斯的方法,請(qǐng)研究以下問(wèn)題:
①設(shè)P(a,)、R(b,),求直線OM對(duì)應(yīng)的函數(shù)關(guān)系式(用含a、b的代數(shù)式表示).
②分別過(guò)點(diǎn)P和R作y軸和x軸的平行線,兩直線相交于點(diǎn)Q.請(qǐng)說(shuō)明Q點(diǎn)在直線OM上,并據(jù)此證明∠MOB=∠AOB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

三等分任意角是三大幾何作圖不能問(wèn)題之一,古希臘數(shù)學(xué)家阿基米德就設(shè)計(jì)出了一個(gè)巧妙的三等分角的方法:在直尺邊緣上添加一點(diǎn)P,命尺端為O(如圖①);設(shè)所要三等分的角是∠MCN,以C為圓心,OP為半徑作半圓交給定角的兩邊CM、CN于A、B兩點(diǎn);移動(dòng)直尺,使直尺上的O點(diǎn)在AC的延長(zhǎng)線上移動(dòng),P點(diǎn)在圓周上移動(dòng),當(dāng)直尺正好通過(guò)B點(diǎn)時(shí),連OPB,則有∠AOB=數(shù)學(xué)公式∠MCN.這種方法由于在直尺上作了一個(gè)記號(hào),不符合尺規(guī)作圖中直尺只能用來(lái)連線的規(guī)定,因此還不能算是嚴(yán)格意義上的尺規(guī)作圖.
(1)動(dòng)手實(shí)踐操作,用以上方法三等分∠MCN,在圖②中畫(huà)出圖形并標(biāo)明相應(yīng)字母;
(2)請(qǐng)你就阿基米德的作圖方法給出證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2013年5月中考數(shù)學(xué)模擬試卷(10)(解析版) 題型:解答題

三等分任意角是三大幾何作圖不能問(wèn)題之一,古希臘數(shù)學(xué)家阿基米德就設(shè)計(jì)出了一個(gè)巧妙的三等分角的方法:在直尺邊緣上添加一點(diǎn)P,命尺端為O(如圖①);設(shè)所要三等分的角是∠MCN,以C為圓心,OP為半徑作半圓交給定角的兩邊CM、CN于A、B兩點(diǎn);移動(dòng)直尺,使直尺上的O點(diǎn)在AC的延長(zhǎng)線上移動(dòng),P點(diǎn)在圓周上移動(dòng),當(dāng)直尺正好通過(guò)B點(diǎn)時(shí),連OPB,則有∠AOB=∠MCN.這種方法由于在直尺上作了一個(gè)記號(hào),不符合尺規(guī)作圖中直尺只能用來(lái)連線的規(guī)定,因此還不能算是嚴(yán)格意義上的尺規(guī)作圖.
(1)動(dòng)手實(shí)踐操作,用以上方法三等分∠MCN,在圖②中畫(huà)出圖形并標(biāo)明相應(yīng)字母;
(2)請(qǐng)你就阿基米德的作圖方法給出證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案