【題目】如圖,在平面直角坐標(biāo)系xOy中,矩形ABCD的邊AB=4,BC=6.若不改變矩形ABCD的形狀和大小,當(dāng)矩形頂點(diǎn)A在x軸的正半軸上左右移動(dòng)時(shí),矩形的另一個(gè)頂點(diǎn)D始終在y軸的正半軸上隨之上下移動(dòng).
(1)當(dāng)∠OAD=30°時(shí),求點(diǎn)C的坐標(biāo);
(2)設(shè)AD的中點(diǎn)為M,連接OM、MC,當(dāng)四邊形OMCD的面積為時(shí),求OA的長(zhǎng);
(3)當(dāng)點(diǎn)A移動(dòng)到某一位置時(shí),點(diǎn)C到點(diǎn)O的距離有最大值,請(qǐng)直接寫出最大值,并求此時(shí)cos∠OAD的值.
【答案】(1)點(diǎn)C的坐標(biāo)為(2,3+2);(2)OA=3;(3)OC的最大值為8,cos∠OAD=.
【解析】
(1)作CE⊥y軸,先證∠CDE=∠OAD=30°得CE=CD=2,DE=,再由∠OAD=30°知OD=AD=3,從而得出點(diǎn)C坐標(biāo);
(2)先求出S△DCM=6,結(jié)合S四邊形OMCD=知S△ODM=,S△OAD=9,設(shè)OA=x、OD=y,據(jù)此知x2+y2=36,xy=9,得出x2+y2=2xy,即x=y,代入x2+y2=36求得x的值,從而得出答案;
(3)由M為AD的中點(diǎn),知OM=3,CM=5,由OC≤OM+CM=8知當(dāng)O、M、C三點(diǎn)在同一直線時(shí),OC有最大值8,連接OC,則此時(shí)OC與AD的交點(diǎn)為M,ON⊥AD,證△CMD∽△OMN得,據(jù)此求得MN=,ON=,AN=AM﹣MN=,再由OA=及cos∠OAD=可得答案.
(1)如圖1,過(guò)點(diǎn)C作CE⊥y軸于點(diǎn)E,
∵矩形ABCD中,CD⊥AD,
∴∠CDE+∠ADO=90°,
又∵∠OAD+∠ADO=90°,
∴∠CDE=∠OAD=30°,
∴在Rt△CED中,CE=CD=2,DE==2,
在Rt△OAD中,∠OAD=30°,
∴OD=AD=3,
∴點(diǎn)C的坐標(biāo)為(2,3+2);
(2)∵M為AD的中點(diǎn),
∴DM=3,S△DCM=6,
又S四邊形OMCD=,
∴S△ODM=,
∴S△OAD=9,
設(shè)OA=x、OD=y,則x2+y2=36,xy=9,
∴x2+y2=2xy,即x=y,
將x=y代入x2+y2=36得x2=18,
解得x=3(負(fù)值舍去),
∴OA=3;
(3)OC的最大值為8,
如圖2,M為AD的中點(diǎn),
∴OM=3,CM==5,
∴OC≤OM+CM=8,
當(dāng)O、M、C三點(diǎn)在同一直線時(shí),OC有最大值8,
連接OC,則此時(shí)OC與AD的交點(diǎn)為M,過(guò)點(diǎn)O作ON⊥AD,垂足為N,
∵∠CDM=∠ONM=90°,∠CMD=∠OMN,
∴△CMD∽△OMN,
∴,即,
解得MN=,ON=,
∴AN=AM﹣MN=,
在Rt△OAN中,OA=,
∴cos∠OAD=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某數(shù)學(xué)興趣小組在活動(dòng)課上測(cè)量學(xué)校旗桿的高度.已知小亮站著測(cè)量,眼睛與地面的距離(AB)是1.6米,看旗桿頂部E的仰角為30°;小敏蹲著測(cè)量,眼睛與地面的距離(CD)是0.6米,看旗桿頂部E的仰角為45°.兩人相距5米且位于旗桿同側(cè)(點(diǎn)B、D、F在同一直線上).求旗桿EF的高度.(結(jié)果保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,函數(shù)和(是常數(shù),且)在同一平面直角坐標(biāo)系的圖象可能是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD中,AB=3,BC=12,E為AD中點(diǎn),F為AB上一點(diǎn),將△AEF沿EF折疊后,點(diǎn)A恰好落到CF上的點(diǎn)G處,則折痕EF的長(zhǎng)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,拋物線y=-x2+bx+c經(jīng)過(guò)點(diǎn)A(-5,0)和點(diǎn)B(1,0).
(1)求拋物線的解析式及頂點(diǎn)D的坐標(biāo);
(2)點(diǎn)P是拋物線上A,D之間的一點(diǎn),過(guò)點(diǎn)P作PE⊥x軸于點(diǎn)E,PG⊥y軸,交拋物線于點(diǎn)G.過(guò)點(diǎn)G作GF⊥x軸于點(diǎn)F.當(dāng)矩形PEFG的周長(zhǎng)最大時(shí),求點(diǎn)P的橫坐標(biāo);
(3)如圖2,連接AD,BD,點(diǎn)M在線段AB上(不與A,B重合),作∠DMN=∠DBA,MN交線段AD于點(diǎn)N,是否存在這樣的點(diǎn)M,使得△DMN為等腰三角形?若存在,求出AN的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(12分)如圖1,點(diǎn)O是正方形ABCD兩對(duì)角線的交點(diǎn),分別延長(zhǎng)OD到點(diǎn)G,OC到點(diǎn)E,使OG=2OD,OE=2OC,然后以OG、OE為鄰邊作正方形OEFG,連接AG,DE.
(1)求證:DE⊥AG;
(2)正方形ABCD固定,將正方形OEFG繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)α角(0°<α<360°)得到正方形OE′F′G′,如圖2.
①在旋轉(zhuǎn)過(guò)程中,當(dāng)∠OAG′是直角時(shí),求α的度數(shù);
②若正方形ABCD的邊長(zhǎng)為1,在旋轉(zhuǎn)過(guò)程中,求AF′長(zhǎng)的最大值和此時(shí)α的度數(shù),直接寫出結(jié)果不必說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】求二次函數(shù)的圖象如圖所示,其對(duì)稱軸為直線,與軸的交點(diǎn)為、,其中,有下列結(jié)論:①;②;③;④;⑤;其中,正確的結(jié)論有( )
A.5B.4C.3D.2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,Rt△ABC中,∠ACB=90°,AC=BC,在以AB的中點(diǎn)O為坐標(biāo)原點(diǎn),AB所在直線為x軸建立的平面直角坐標(biāo)系中,將△ABC繞點(diǎn)B順時(shí)針旋轉(zhuǎn),使點(diǎn)A旋轉(zhuǎn)至y軸的正半軸上的點(diǎn)A'處,若AO=OB=2,則圖中陰影部分面積為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AB為⊙O的直徑,C為⊙O上一點(diǎn),BG與⊙O相切于點(diǎn)B,交AC的延長(zhǎng)線于點(diǎn)D(點(diǎn)D在線段BG上),AC = 8,tan∠BDC =
(1)求⊙O的直徑;
(2)當(dāng)DG=時(shí),過(guò)G作,交BA的延長(zhǎng)線于點(diǎn)E,說(shuō)明EG與⊙O相切.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com