已知:如圖,在半徑為8的⊙O中,AB,CD是兩條直徑,M為OB的中點(diǎn),CM的延長(zhǎng)線交⊙O于點(diǎn)E,且EM>MC.連接DE,DE=2
15

(1)求證:
AM
EM
=
MC
MB
;
(2)求EM的長(zhǎng);
(3)求sin∠EOB的值.
分析:(1)連接A、C,E、B點(diǎn),那么只需要求出△AMC和△EMB相似,即可求出結(jié)論,根據(jù)圓周角定理可推出它們的對(duì)應(yīng)角相等,即可得△AMC∽△EMB,進(jìn)而證明
AM
EM
=
MC
MB
;
(2)根據(jù)圓周角定理,結(jié)合勾股定理,可以推出EC的長(zhǎng)度,根據(jù)已知條件推出AM、BM的長(zhǎng)度,然后結(jié)合(1)的結(jié)論,很容易就可求出EM的長(zhǎng)度;
(3)過(guò)點(diǎn)E作EF⊥AB,垂足為點(diǎn)F,通過(guò)作輔助線,解直角三角形,結(jié)合已知條件和(1)(2)所求的值,可推出Rt△EOF各邊的長(zhǎng)度,根據(jù)銳角三角函數(shù)的定義,便可求得sin∠EOB的值.
解答:(1)證明:連接AC、EB,
∵∠A=∠BEC,∠B=∠ACE,
∴△AMC∽△EMB,
AM
EM
=
MC
MB
;

(2)解:∵DC是⊙O的直徑,
∴∠DEC=90°,
∴DE2+EC2=DC2,
∵DE=2
15
,CD=16,且EC為正數(shù),
∴EC=14,
∵M(jìn)為OB的中點(diǎn),
∴BM=4,AM=12,
AM
EM
=
MC
MB

∴AM•BM=EM•CM=48,且EM>MC,
∴EM=8;

(3)解:過(guò)點(diǎn)E作EF⊥AB,垂足為點(diǎn)F,
∵OE=8,EM=8,
∴OE=EM,
∴OF=FM=2,
∴EF=
82-22
=2
15

∴sin∠EOB=
EF
OE
=
2
15
8
=
15
4
點(diǎn)評(píng):本題主要考查了相似三角形的判定和性質(zhì)、圓周角定理,銳角三角函數(shù)定義、勾股定理的知識(shí)點(diǎn),本題關(guān)鍵根據(jù)已知條件和圖形作好輔助線,結(jié)論就很容易求證了.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,在半徑為4的⊙O中,AB、CD是兩條直徑,M為OB的中點(diǎn),CM的延長(zhǎng)線交⊙O精英家教網(wǎng)于點(diǎn)E,且EM>MC.連接DE,DE=
15

(1)求證:AM•MB=EM•MC;
(2)求EM的長(zhǎng);
(3)求sin∠EOB的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知:如圖,在半徑為4的⊙O中,圓心角∠AOB=90°,以半徑OA、OB的中點(diǎn)C、F為頂點(diǎn)作矩形CDEF,頂點(diǎn)D、E在⊙O的劣弧
AB
上,OM⊥DE于點(diǎn)M.試求圖中陰影部分的面積.(結(jié)果保留π)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,在半徑為2的半圓O中,半徑OA垂直于直徑BC,點(diǎn)E與點(diǎn)F分別在弦AB、AC精英家教網(wǎng)上滑動(dòng)并保持AE=CF,但點(diǎn)F不與A、C重合,點(diǎn)E不與A、B重合.
(1)求四邊形AEOF的面積.
(2)設(shè)AE=x,S△OEF=y,寫(xiě)出y與x之間的函數(shù)關(guān)系式,求x取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,在半徑為4的⊙O中,AB,CD是兩條直徑,M為OB的中點(diǎn),CM的延長(zhǎng)線交⊙O于點(diǎn)E,且EM>MC.連接DE,DE=
15

(1)求證:AM•MB=EM•MC;
(2)求sin∠EOB的值;
(3)若P是直徑AB延長(zhǎng)線上的點(diǎn),且BP=12,求證:直線PE是⊙O的切線.

查看答案和解析>>

同步練習(xí)冊(cè)答案