16.如圖,對于圖中標記的各角,下列條件能夠推理得到a∥b的是( 。
A.∠1=∠4B.∠2=∠4C.∠3+∠2=∠4D.∠2+∠3+∠4=180°

分析 在復(fù)雜的圖形中具有相等關(guān)系的兩角首先要判斷它們是否是同位角或內(nèi)錯角,被判斷平行的兩直線是否由“三線八角”而產(chǎn)生的被截直線.

解答 解:A、∠1=∠4,因為它們不是a、b被截得的同位角或內(nèi)錯角,不符合題意;
B、∠2=∠4,因為它們不是a、b被截得的同位角或內(nèi)錯角,不符合題意;
C、∠3+∠2=∠4,因為它們是a、b被截得的同位角或內(nèi)錯角,符合題意;
D、∠2+∠3+∠4=180°,因為∠2+∠3與∠4是a、b被截得的同位角,不符合題意.
故選:C.

點評 本題考查了平行線的判定方法;正確識別“三線八角”中的同位角、內(nèi)錯角、同旁內(nèi)角是正確答題的關(guān)鍵,不能遇到相等或互補關(guān)系的角就誤認為具有平行關(guān)系,只有同位角相等、內(nèi)錯角相等、同旁內(nèi)角互補,才能推出兩被截直線平行.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:填空題

6.若x=3是關(guān)于x的方程2x+a=1的解,則a的值是-5.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

7.如圖,在△ABC中,AB=AC=2,∠B=40°,點D在線段BC上運動(不與B、C重合),連接AD,作∠ADE=40°,DE交線段AC于點E.
(1)當∠ADB=115°時,∠BAD=25°,∠DEC=115°;
(2)線段DC的值為多少時,△ABD與△DCE全等?請說明理由;
(3)在點D的運動過程中,△ADE的形狀可以是等腰三角形嗎?若可以,請直接寫出∠ADB的度數(shù);若不可以,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

4.大于1的正整數(shù)m的三次冪可“分裂”成若干個連續(xù)奇數(shù)的和,如23=3+5,33=7+9+11,43=13+15+17+19,…,若m3分裂后,其中有一個奇數(shù)是123,則m的值是(  )
A.9B.10C.11D.12

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

11.已知|a+1|+(1-$\frac{1}{2}$b)2=0,A=4a2-ab+4b2,B=3a2-ab+3b2,求3A-2(A-B)的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

1.若$\sqrt{{x}^{2}}$=9,則x的值是±9.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

8.$\sqrt{-{x}^{2}-2x-1}$在實數(shù)范圍內(nèi)有意義,求x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

5.計算.
(1)$\sqrt{4\frac{1}{5}}$+$\sqrt{\frac{7}{10}}$   
(2)2$\sqrt{1\frac{1}{2}}$+5$\sqrt{\frac{1}{6}}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

6.計算(4$\sqrt{6}$-4$\sqrt{\frac{1}{2}}$+3$\sqrt{8}$)÷2$\sqrt{2}$的結(jié)果是( 。
A.2$\sqrt{3}$+2B.2$\sqrt{3}$-2C.$\sqrt{3}$+2D.$\sqrt{3}$-2

查看答案和解析>>

同步練習(xí)冊答案