精英家教網(wǎng)已知:如圖,在正方形ABCD中,F(xiàn)是AD的中點,BF與AC交于點G,則△BFC與四邊形CGFD的面積之比是
 
分析:設正方形的邊長是a,可分別求得△BFC,△ABC,△AFG的面積,從而可求得四邊形CGFD的面積,則不難求△BFC與四邊形CGFD的面積之比.
解答:精英家教網(wǎng)解:∵F是AD的中點,
∴AF=
1
2
AD=
1
2
BC,
設正方形的邊長是a,則△BFC的面積是
1
2
a2,△ABC的面積是
1
2
a2,
AF=
a
2
,S△ABF=
1
2
×
a
2
×a=
a2
4
,
FG
BG
=
1
2
,
∴S△AFG=
1
3
S△AFB=
a2
12

∴四邊形CGFD的面積a2-
1
2
a2-
a2
12
=
5a2
12
,
∴△BFC與四邊形CGFD的面積之比是6:5.
故答案為:6:5.
點評:本題考查了正方形的性質(zhì),正確計算圖形中四邊形CGFD的面積是解決本題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知:如圖,在正方形ABCD中,E是CB延長線上一點,EB=
12
BC,如果F是AB的中點,請你在正方形ABCD上找一點,與F點連接成線段,并說明它和AE相等的理由.
解:連接
 
,則
 
=AE.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知:如圖,在正方形ABCD外取一點E,連接AE、BE、DE.過點A作AE的垂線交DE于點P.若AE=AP=1,PB=
5
.下列結(jié)論:
①△APD≌△AEB;
②點B到直線AE的距離為
2
;
③EB⊥ED;
④S△APD+S△APB=1+
6
;
⑤S正方形ABCD=4+
6
.其中正確結(jié)論的序號是( 。
A、①③④B、①②⑤
C、③④⑤D、①③⑤

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知:如圖,在正方形ABCD中,P是BC上的點,且BP=3PC,Q是CD的中點.△ADQ與△QCP是否相似?
為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,在正方形ABCD中,AB=8,點E在邊AB上點,CE的垂直平分線FP 分別交AD精英家教網(wǎng)、CE、CB于點F、H、G,交AB的延長線于點P.
(1)求證:△EBC∽△EHP;
(2)設BE=x,BP=y,求y與x之間的函數(shù)解析式,并寫出定義域;
(3)當BG=
74
時,求BP的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,在正方形ABCD中,E、F分別是AD、CD的中點.
(1)線段AF與BE有何關系.說明理由;
(2)延長AF、BC交于點H,則B、D、G、H這四個點是否在同一個圓上.說明理由.

查看答案和解析>>

同步練習冊答案