把兩個全等的直角三角板的斜邊重合,組成一個四邊形ABCD以D為頂點作∠MDN,交邊AC、BC于M、N.
(1)若∠ACD=30°,∠MDN=60°,當(dāng)∠MDN繞點D旋轉(zhuǎn)時,AM、MN、BN三條線段之間有何種數(shù)量關(guān)系?證明你的結(jié)論;
(2)當(dāng)∠ACD+∠MDN=90°時,AM、MN、BN三條線段之間有何數(shù)量關(guān)系?證明你的結(jié)論;
(3)如圖③,在(2)的結(jié)論下,若將M、N分改在CA、BC的延長上,完成圖3,其余條件不變,則AM、MN、BN之間有何數(shù)量關(guān)系(直接寫出結(jié)論,不必證明)


(1)AM+BN=MN,
證明:延長CB到E,使BE=AM,
∵∠A=∠CBD=90°,
∴∠A=∠EBD=90°,
在△DAM和△DBE中

∴△DAM≌△DBE,
∴∠BDE=∠MDA,DM=DE,
∵∠MDN=∠ADC=60°,
∴∠ADM=∠NDC,
∴∠BDE=∠NDC,
∴∠MDN=∠NDE,
在△MDN和△EDN中
,
∴△MDN≌△EDN,
∴MN=NE,
∵NE=BE+BN=AM+BN,
∴AM+BN=MN.

(2)AM+BN=MN,
證明:延長CB到E,使BE=AM,連接DE,
∵∠A=∠CBD=90°,
∴∠A=∠DBE=90°,
∵∠CDA+∠ACD=90°,∠MDN+∠ACD=90°,
∴∠MDN=∠ADC,
∵∠ADN=∠BDC,
∴∠MDA=∠CDN,∠CDM=∠NDB,
在△DAM和△DBE中
,
∴△DAM≌△DBE,
∴∠BDE=∠MDA=∠CDN,DM=DE,
∵∠MDN+∠ACD=90°,∠ACD+∠ADC=90°,
∴∠NDM=∠ADC=∠CDB,
∴∠ADM=∠CDN=∠BDE,
∵∠CDM=∠NDB
∴∠MDN=∠NDE,
在△MDN和△EDN中
,
∴△MDN≌△EDN,
∴MN=NE,
∵NE=BE+BN=AM+BN,
∴AM+BN=MN.

(3)BN-AM=MN,
證明:在CB截取BE=AM,連接DE,
∵∠CDA+∠ACD=90°,∠MDN+∠ACD=90°,
∴∠MDN=∠ADC,
∵∠ADN=∠ADN,
∴∠MDA=∠CDN,
∵∠B=∠CAD=90°,
∴∠B=∠DAM=90°,
在△DAM和△DBE中
,
∴△DAM≌△DBE,
∴∠BDE=∠ADM=∠CDN,DM=DE,
∵∠ADC=∠BDC=∠MDN,
∴∠MDN=∠EDN,
在△MDN和△EDN中
,
∴△MDN≌△EDN,
∴MN=NE,
∵NE=BN-BE=BN-AM,
∴BN-AM=MN.
分析:(1)延長CB到E,使BE=AM,證△DAM≌△DBE,推出∠BDE=∠MDA,DM=DE,證△MDN≌△EDN,推出MN=NE即可;
(2)延長CB到E,使BE=AM,證△DAM≌△DBE,推出∠BDE=∠MDA,DM=DE,證△MDN≌△EDN,推出MN=NE即可;
(3)在CB截取BE=AM,連接DE,證△DAM≌△DBE,推出∠BDE=∠MDA,DM=DE,證△MDN≌△EDN,推出MN=NE即可.
點評:本題考查了全等三角形的性質(zhì)和判定的應(yīng)用,主要考查學(xué)生運用性質(zhì)進行推理的能力,運用了類比推理的方法,題目比較典型,但有一定的難度.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

把兩個全等的直角三角板的斜邊重合,組成一個四邊形ABCD以D為頂點作∠MDN,交邊AC、BC于M、N.
(1)若∠ACD=30°,∠MDN=60°,當(dāng)∠MDN繞點D旋轉(zhuǎn)時,AM、MN、BN三條線段之間有何種數(shù)量關(guān)系?證明你的結(jié)論;
(2)當(dāng)∠ACD+∠MDN=90°時,AM、MN、BN三條線段之間有何數(shù)量關(guān)系?證明你的結(jié)論;
(3)如圖③,在(2)的結(jié)論下,若將M、N分改在CA、BC的延長上,完成圖3,其余條件不變,則AM、MN、BN之間有何數(shù)量關(guān)系(直接寫出結(jié)論,不必證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

把兩個全等的直角三角板ABC和EFG疊放在一起,且使三角板EFG的直角頂點G與三角板ABC的斜邊中點O重合,其中∠B=∠F=30°,斜邊AB和EF的長均為4。

(1)當(dāng)EG⊥AC于點K,GF⊥BC于點H時,如圖23-1,求GH:GK的值.

(2)現(xiàn)將三角板EFG由圖23-1所示的位置繞O點沿逆時針方向旋轉(zhuǎn),旋轉(zhuǎn)角滿足條件:

0°<<30°,如圖23-2,EG交AC于點K,GF交BC于點H,GH:GK的值是否改變?證明你的結(jié)論.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

把兩個全等的直角三角板ABC和EFG疊放在一起,且使三角板EFG的直角頂點G與三角板ABC的斜邊中點O重合,其中∠B=∠F=30°,斜邊AB和EF的長均為4。
(1)當(dāng)EG⊥AC于點K,GF⊥BC于點H時,如圖23-1,求GH:GK的值.
(2)現(xiàn)將三角板EFG由圖23-1所示的位置繞O點沿逆時針方向旋轉(zhuǎn),旋轉(zhuǎn)角滿足條件:
0°<<30°,如圖23-2,EG交AC于點K,GF交BC于點H,GH:GK的值是否改變?證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011屆湖南省岳陽市長煉中學(xué)初三上學(xué)期末數(shù)學(xué)卷 題型:解答題

把兩個全等的直角三角板ABC和EFG疊放在一起,且使三角板EFG的直角頂點G與三角板ABC的斜邊中點O重合,其中∠B=∠F=30°,斜邊AB和EF的長均為4。
(1)當(dāng)EG⊥AC于點K,GF⊥BC于點H時,如圖23-1,求GH:GK的值.
(2)現(xiàn)將三角板EFG由圖23-1所示的位置繞O點沿逆時針方向旋轉(zhuǎn),旋轉(zhuǎn)角滿足條件:
0°<<30°,如圖23-2,EG交AC于點K,GF交BC于點H,GH:GK的值是否改變?證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010-2011學(xué)年湖南省岳陽市初三上學(xué)期末數(shù)學(xué)卷 題型:解答題

把兩個全等的直角三角板ABC和EFG疊放在一起,且使三角板EFG的直角頂點G與三角板ABC的斜邊中點O重合,其中∠B=∠F=30°,斜邊AB和EF的長均為4。

(1)當(dāng)EG⊥AC于點K,GF⊥BC于點H時,如圖23-1,求GH:GK的值.

(2)現(xiàn)將三角板EFG由圖23-1所示的位置繞O點沿逆時針方向旋轉(zhuǎn),旋轉(zhuǎn)角滿足條件:

0°<<30°,如圖23-2,EG交AC于點K,GF交BC于點H,GH:GK的值是否改變?證明你的結(jié)論.

 

查看答案和解析>>

同步練習(xí)冊答案