分析 (1)通過解析式即可得出C點坐標(biāo),令y=0,解方程得出方程的解,即可求得A、B的坐標(biāo).
(2)根據(jù)AB的長和三角形面積求得H的縱坐標(biāo)為3,代入解析式即可求得橫坐標(biāo);
(3)設(shè)M點橫坐標(biāo)為m,則PM=-m2-2m+3,MN=(-m-1)×2=-2m-2,矩形PMNQ的周長d=-2m2-8m+2,將-2m2-8m+2配方,根據(jù)二次函數(shù)的性質(zhì),即可得出m的值,然后求得直線AC的解析式,把x=m代入可以求得三角形的邊長,從而求得三角形的面積.
解答 解:(1)由拋物線y=-x2-2x+3可知,C(0,3),
令y=0,則0=-x2-2x+3,解得x=-3或x=1,
∴A(-3,0),B(1,0).
(2)∵A(-3,0),B(1,0).
∴AB=4,
∵△HAB的面積是6,點H是第二象限內(nèi)拋物線上的一點,
∴H的縱坐標(biāo)為3,
把y=3代入y=-x2-2x+3得3=-x2-2x+3,解得x1=0,x2=-2,
∴H(-2,3);
(3)由拋物線y=-x2-2x+3可知,對稱軸為x=-1,
設(shè)M點的橫坐標(biāo)為m,則PM=-m2-2m+3,MN=(-m-1)×2=-2m-2,
∴矩形PMNQ的周長=2(PM+MN)=(-m2-2m+3-2m-2)×2=-2m2-8m+2=-2(m+2)2+10,
∴當(dāng)m=-2時矩形的周長最大.
∵A(-3,0),C(0,3),設(shè)直線AC解析式為y=kx+b,
則$\left\{\begin{array}{l}{-3k+b=0}\\{b=3}\end{array}\right.$解得:$\left\{\begin{array}{l}{k=1}\\{b=3}\end{array}\right.$,
∴解析式y(tǒng)=x+3,當(dāng)x=-2時,則E(-2,1),
∴EM=1,AM=1,
∴S=$\frac{1}{2}$•AM•EM=$\frac{1}{2}$.
點評 本題考查了二次函數(shù)與坐標(biāo)軸的交點的求法,矩形的性質(zhì)、一元二次方程的解法等知識,綜合性較強(qiáng),運用數(shù)形結(jié)合、方程思想是解題的關(guān)鍵.
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | -1 | B. | 0 | C. | $\sqrt{2}$ | D. | 3 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,$\frac{8}{3}$) | B. | (0,-$\frac{8}{3}$) | C. | (0,$\frac{13}{3}$) | D. | (0,-$\frac{13}{3}$) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com