【題目】如圖,將邊長(zhǎng)為6cm的正方形ABCD折疊,使點(diǎn)D落在AB邊的中點(diǎn)E處,折痕為FH,點(diǎn)C落在Q處,EQ與BC交于點(diǎn)G,則△EBG的周長(zhǎng)是 cm.
【答案】12cm
【解析】
試題分析:設(shè)AF=x,則DF=6﹣x,由折疊的性質(zhì)可知:EF=DF=6﹣x,在Rt△AFE,由勾股定理可求得:x=,然后再證明△FAE∽△EBG,從而可求得BG=4,接下來(lái)在Rt△EBG中,由勾股定理可知:EG=5,從而可求得△EBG的周長(zhǎng)為12cm.
解:設(shè)AF=x,則DF=6﹣x,由折疊的性質(zhì)可知:EF=DF=6﹣x.
在Rt△AFE,由勾股定理可知:EF2=AF2+AE2,即(6﹣x)2=x2+32,
解得:x=.
∵∠FEG=90°,
∴∠AEF+∠BEG=90°.
又∵∠BEG+∠BGE=90°,
∴∠AEF=∠BGE.
又∵∠EAF=∠EBG,
∴△FAE∽△EBG.
∴,即.
∴BG=4.
在Rt△EBG中,由勾股定理可知:EG===5.
所以△EBG的周長(zhǎng)=3+4+5=12cm.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“一次拋六枚均勻的骰子,朝上一面的點(diǎn)數(shù)都為6”這一事件是( )
A.必然事件
B.隨機(jī)事件
C.確定事件
D.不可能事件
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知直線y1=x與雙曲線y2=(k>0)交于A、B兩點(diǎn),且點(diǎn)A的橫坐標(biāo)為4.
(1)k的值為 ;當(dāng)x的取值范圍為 時(shí),y1>y2;
(2)若雙曲線y2=(k>0)上一點(diǎn)C的縱坐標(biāo)為8,求△AOC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】五張如圖1的長(zhǎng)為,寬為(>)的小長(zhǎng)方形紙片,按圖2的方式不重疊地放在長(zhǎng)方形ABCD內(nèi),未被覆蓋的部分(兩個(gè)長(zhǎng)方形)用陰影表示.設(shè)左上角與右下角的陰影部分的面積的差為S,當(dāng)BC的長(zhǎng)度變化時(shí),按照同樣的放置方式,S始終保持不變,則,滿足( )
A.= B.=2 C.=3 D.=4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】平行四邊形兩鄰邊的長(zhǎng)分別為16和20,兩條長(zhǎng)邊間的距離為8,則兩條短邊間的距離為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,反比例函數(shù)y1=與一次函數(shù)y2=kx+b的圖象交于兩點(diǎn)A(n,﹣1)、B(1,2).
(1)求反比例函數(shù)與一次函數(shù)的關(guān)系式;
(2)根據(jù)圖象,直接回答:當(dāng)x取何值時(shí),y1≥y2?
(3)連接OA、OB,求△AOB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】元旦期間,商業(yè)大廈推出全場(chǎng)打八折的優(yōu)惠活動(dòng),持貴賓卡可在八折基礎(chǔ)上繼續(xù)打折,小明媽媽持貴賓卡買(mǎi)了標(biāo)價(jià)為1000元的商品,共節(jié)省280元,則用貴賓卡又享受了______折優(yōu)惠.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com