【題目】如圖1,在Rt△ABC中,∠A=90°,AB=AC,點(diǎn)D,E分別在邊AB,AC上,AD=AE,連接DC,點(diǎn)M,P,N分別為DE,DC,BC的中點(diǎn).
(1)觀察猜想
圖1中,線段PM與PN的數(shù)量關(guān)系是 ,位置關(guān)系是 ;
(2)探究證明
把△ADE繞點(diǎn)A逆時(shí)針方向旋轉(zhuǎn)到圖2的位置,連接MN,BD,CE,判斷△PMN的形狀,并說明理由;
(3)拓展延伸
把△ADE繞點(diǎn)A在平面內(nèi)自由旋轉(zhuǎn),若AD=4,AB=10,請(qǐng)直接寫出△PMN面積的最大值.
【答案】(1)PM=PN, PM⊥PN;(2)△PMN是等腰直角三角形,理由詳見解析;(3).
【解析】
(1)利用三角形的中位線得出PM=CE,PN=BD,進(jìn)而判斷出BD=CE,即可得出結(jié)論,再利用三角形的中位線得出PM∥CE得出∠DPM=∠DCA,最后用互余即可得出結(jié)論;
(2)先判斷出△ABD≌△ACE,得出BD=CE,同(1)的方法得出PM=BD,PN=BD,即可得出PM=PN,同(1)的方法即可得出結(jié)論;
(3)方法1、先判斷出MN最大時(shí),△PMN的面積最大,進(jìn)而求出AN,AM,即可得出MN最大=AM+AN,最后用面積公式即可得出結(jié)論.
方法2、先判斷出BD最大時(shí),△PMN的面積最大,而BD最大是AB+AD=14,即可.
解:(1)∵點(diǎn)P,N是BC,CD的中點(diǎn),
∴PN∥BD,PN=BD,
∵點(diǎn)P,M是CD,DE的中點(diǎn),
∴PM∥CE,PM=CE,
∵AB=AC,AD=AE,
∴BD=CE,
∴PM=PN,
∵PN∥BD,
∴∠DPN=∠ADC,
∵PM∥CE,
∴∠DPM=∠DCA,
∵∠BAC=90°,
∴∠ADC+∠ACD=90°,
∴∠MPN=∠DPM+∠DPN=∠DCA+∠ADC=90°,
∴PM⊥PN,
故答案為:PM=PN,PM⊥PN,
(2)由旋轉(zhuǎn)知,∠BAD=∠CAE,
∵AB=AC,AD=AE,
∴△ABD≌△ACE(SAS),
∴∠ABD=∠ACE,BD=CE,
同(1)的方法,利用三角形的中位線得,PN=BD,PM=CE,
∴PM=PN,
∴△PMN是等腰三角形,
同(1)的方法得,PM∥CE,
∴∠DPM=∠DCE,
同(1)的方法得,PN∥BD,
∴∠PNC=∠DBC,
∵∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,
∴∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC
=∠BCE+∠DBC=∠ACB+∠ACE+∠DBC
=∠ACB+∠ABD+∠DBC=∠ACB+∠ABC,
∵∠BAC=90°,
∴∠ACB+∠ABC=90°,
∴∠MPN=90°,
∴△PMN是等腰直角三角形,
(3)方法1、如圖2,同(2)的方法得,△PMN是等腰直角三角形,
∴MN最大時(shí),△PMN的面積最大,
∴DE∥BC且DE在頂點(diǎn)A上面,
∴MN最大=AM+AN,
連接AM,AN,
在△ADE中,AD=AE=4,∠DAE=90°,
∴AM=2,
在Rt△ABC中,AB=AC=10,AN=5,
∴MN最大=2+5=7,
∴S△PMN最大=PM2=×MN2=×(7)2=.
方法2、由(2)知,△PMN是等腰直角三角形,PM=PN=BD,
∴PM最大時(shí),△PMN面積最大,
∴點(diǎn)D在BA的延長線上,
∴BD=AB+AD=14,
∴PM=7,
∴S△PMN最大=PM2=×72=
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在一次數(shù)學(xué)課外實(shí)踐活動(dòng)中,要求測(cè)量山坡前某建筑物的高度AB.小剛在D處用高1.5m的測(cè)角儀CD,測(cè)得該建筑物頂端A的仰角為45°,然后沿傾斜角為30°的山坡向上前進(jìn)20m到達(dá)E,重新安裝好測(cè)角儀后又測(cè)得該建筑物頂端A的仰角為60°.求該建筑物的高度AB.(結(jié)果保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC為等邊三角形,O為BC的中點(diǎn),D、E分別在邊AB、AC上.如圖1.
(1)若∠DOE=120°,求證:OD=OE;
(2)如圖2,BD=4,CE=2,M是DE的中點(diǎn),求OM的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“C919”大型客機(jī)首飛成功,激發(fā)了同學(xué)們對(duì)航空科技的興趣,如圖是某校航模興趣小組獲得的一張數(shù)據(jù)不完整的航模飛機(jī)機(jī)翼圖紙,圖中AB∥CD,AM∥BN∥ED,AE⊥DE,請(qǐng)根據(jù)圖中數(shù)據(jù),求出線段BE和CD的長.(sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,結(jié)果保留小數(shù)點(diǎn)后一位)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖1是太陽能熱水器裝置的示意圖,利用玻璃吸熱管可以把太陽能轉(zhuǎn)化為熱能,玻璃吸熱管與太陽光線垂直時(shí),吸收太陽能的效果最好,假設(shè)某用戶要求根據(jù)本地區(qū)冬至正午時(shí)刻太陽光線與地面水平線的夾角(θ)確定玻璃吸熱管的傾斜角(太陽光線與玻璃吸熱管垂直),請(qǐng)完成以下計(jì)算:如圖2,AB⊥BC,垂足為點(diǎn)B,CD∥AB,F(xiàn)G⊥DE,垂足為點(diǎn)G,若∠θ=37°50′,F(xiàn)G=30cm,CD=10cm,求CF的長(結(jié)果取整數(shù),參考數(shù)據(jù):sin37°50′≈0.6l,cos37°50′≈079,tan37°50′≈0.78)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=2∠B.
(1)作∠ACB的平分線交AB于D(要求用尺規(guī)作圖,保留作圖痕跡,不要求寫作法);
(2)若AB=10,AC=6,求△ACD的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】講授“軸對(duì)稱”時(shí),八年級(jí)教師設(shè)計(jì)了如下:四種教學(xué)方法:
① 教師講,學(xué)生聽
② 教師讓學(xué)生自己做
③ 教師引導(dǎo)學(xué)生畫圖發(fā)現(xiàn)規(guī)律
④ 教師讓學(xué)生對(duì)折紙,觀察發(fā)現(xiàn)規(guī)律,然后畫圖
為調(diào)查教學(xué)效果,八年級(jí)教師將上述教學(xué)方法作為調(diào)研內(nèi)容發(fā)到全年級(jí)8個(gè)班420名同學(xué)手中,要求每位同學(xué)選出自己最喜歡的一種.他隨機(jī)抽取了60名學(xué)生的調(diào)查問卷,統(tǒng)計(jì)如圖
(1) 請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(2) 計(jì)算扇形統(tǒng)計(jì)圖中方法③的圓心角的度數(shù)是 ;
(3) 八年級(jí)同學(xué)中最喜歡的教學(xué)方法是哪一種?選擇這種教學(xué)方法的約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖.對(duì)稱軸x=﹣1.下列結(jié)論:
①4ac﹣b2<0;②4a+c<2b;③3b+2c<0.
其中正確結(jié)論的個(gè)數(shù)是( 。
A. 3個(gè) B. 2個(gè) C. 1個(gè) D. 0個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“中國制造”是世界上認(rèn)知度最高的標(biāo)簽之一,因此,我縣越來越多的群眾選擇購買國產(chǎn)空調(diào),已知購買1臺(tái)A型號(hào)的空調(diào)比1臺(tái)B型號(hào)的空調(diào)少200元,購買2臺(tái)A型號(hào)的空調(diào)與3臺(tái)B型號(hào)的空調(diào)共需11200元,求A、B兩種型號(hào)的空調(diào)的購買價(jià)各是多少元?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com