平面直角坐標(biāo)系xOy中,直線(xiàn)l:y=-
43
x+4
分別交x軸、y軸于點(diǎn)A、B,把直線(xiàn)l繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°,交y軸于點(diǎn)A′,交直線(xiàn)l于點(diǎn)C,則△A′BC的面積為
 
分析:先求出A,B的坐標(biāo),再根據(jù)直線(xiàn)l繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°求出旋轉(zhuǎn)后的解析式,根據(jù)三角形面積公式即可求解.
解答:解:∵直線(xiàn)l:y=-
4
3
x+4
分別交x軸、y軸于點(diǎn)A、B,∴A(3,0),B(0,4),
當(dāng)把直線(xiàn)l繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°,直線(xiàn)的解析式為:y=
3
4
x+3,
∴A(0,3),∵
y=-
4
3
x+4
y=
3
4
x+3
解得:
x=
12
25
y=
84
25
,
∴△A′BC的面積為:
1
2
×(4-3)
12
25
=
6
25
,
故答案為:
6
25
點(diǎn)評(píng):本題考查了一次函數(shù)圖象與幾何變換及直角三角形的性質(zhì),屬于基礎(chǔ)題,關(guān)鍵是求出把直線(xiàn)繞O點(diǎn)逆時(shí)針旋轉(zhuǎn)90°后的解析式.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知在平面直角坐標(biāo)系xOy中,一次函數(shù)y=kx+b(k≠0)的圖象與反比例函數(shù)y=
m
x
(m≠0)的圖象相交于A(yíng)、B兩點(diǎn),且點(diǎn)B的縱坐標(biāo)為-
1
2
,過(guò)點(diǎn)A作AC⊥x軸于點(diǎn)C,AC=1,OC=2.
求:(1)求反比例函數(shù)的解析式;
(2)求一次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xOy中,△AOB的位置如圖所示,已知∠AOB=精英家教網(wǎng)90°,∠A=60°,點(diǎn)A的坐標(biāo)為(-
3
,1).
求:(1)點(diǎn)B的坐標(biāo);
(2)圖象經(jīng)過(guò)A、O、B三點(diǎn)的二次函數(shù)的解析式和這個(gè)函數(shù)圖象的頂點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖(1),將Rt△AOB放置在平面直角坐標(biāo)系xOy中,∠A=90°,∠AOB=60°,OB=2
3
,斜邊OB在x軸的正半軸上,點(diǎn)A在第一象限,∠AOB的平分線(xiàn)OC交AB于C.動(dòng)點(diǎn)P從點(diǎn)B出發(fā)沿折線(xiàn)BC-CO以每秒1個(gè)單位長(zhǎng)度的速度向終點(diǎn)O運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為t秒,同時(shí)動(dòng)點(diǎn)Q從點(diǎn)C出發(fā)沿折線(xiàn)CO-Oy以相同的速度運(yùn)動(dòng),當(dāng)點(diǎn)P到達(dá)點(diǎn)O時(shí)P、Q同時(shí)停止運(yùn)動(dòng).
(1)OC、BC的長(zhǎng);
(2)設(shè)△CPQ的面積為S,求S與t的函數(shù)關(guān)系式;
(3)當(dāng)P在OC上、Q在y軸上運(yùn)動(dòng)時(shí),如圖(2),設(shè)PQ與OA交于點(diǎn)M,當(dāng)t為何值時(shí),△OPM為等腰三角形?求出所有滿(mǎn)足條件的t值.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知平面直角坐標(biāo)系xOy中,點(diǎn)A(2,m),B(-3,n)為兩動(dòng)點(diǎn),其中m>1,連接O精英家教網(wǎng)A,OB,OA⊥OB,作BC⊥x軸于C點(diǎn),AD⊥x軸于D點(diǎn).
(1)求證:mn=6;
(2)當(dāng)S△AOB=10時(shí),拋物線(xiàn)經(jīng)過(guò)A,B兩點(diǎn)且以y軸為對(duì)稱(chēng)軸,求拋物線(xiàn)對(duì)應(yīng)的二次函數(shù)的關(guān)系式;
(3)在(2)的條件下,設(shè)直線(xiàn)AB交y軸于點(diǎn)F,過(guò)點(diǎn)F作直線(xiàn)l交拋物線(xiàn)于P,Q兩點(diǎn),問(wèn)是否存在直線(xiàn)l,使S△POF:S△QOF=1:2?若存在,求出直線(xiàn)l對(duì)應(yīng)的函數(shù)關(guān)系式;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•河?xùn)|區(qū)一模)如圖,在平面直角坐標(biāo)系xOy中,矩形AOCD的頂點(diǎn)A的坐標(biāo)是(0,4),現(xiàn)有兩動(dòng)點(diǎn)P、Q,點(diǎn)P從點(diǎn)O出發(fā)沿線(xiàn)段OC(不包括端點(diǎn)O,C)以每秒2個(gè)單位長(zhǎng)度的速度,勻速向點(diǎn)C運(yùn)動(dòng),點(diǎn)Q從點(diǎn)C出發(fā)沿線(xiàn)段CD(不包括端點(diǎn)C,D)以每秒1個(gè)單位長(zhǎng)度的速度勻速向點(diǎn)D運(yùn)動(dòng).點(diǎn)P、Q同時(shí)出發(fā),同時(shí)停止,設(shè)運(yùn)動(dòng)時(shí)間為t秒,當(dāng)t=2秒時(shí)PQ=2
5

(Ⅰ)求點(diǎn)D的坐標(biāo),并直接寫(xiě)出t的取值范圍;
(Ⅱ)連接AQ并延長(zhǎng)交x軸于點(diǎn)E,把AE沿AD翻折交CD延長(zhǎng)線(xiàn)于點(diǎn)F,連接EF,則△AEF的面積S是否隨t的變化而變化?若變化,求出S與t的函數(shù)關(guān)系式;若不變化,求出S的值.
(Ⅲ)在(Ⅱ)的條件下,t為何值時(shí),PQ∥AF?

查看答案和解析>>

同步練習(xí)冊(cè)答案