【題目】(1)如圖(),將兩塊直角三角尺的直角頂點(diǎn)疊放在一起

①若,則__________;若,則___________.

②猜想的度數(shù)有何特殊關(guān)系,并說明理由.

(2)如圖(),兩個(gè)同樣的三角尺銳角的頂點(diǎn)重合在一起,則的度數(shù)有何關(guān)系?請(qǐng)說明理由.

(3)如圖(),已知,作(,都是銳角且),若的內(nèi)部,請(qǐng)直接寫出的度數(shù)關(guān)系.

【答案】1)①120°;40°②∠ACB+DCE=180°,理由見解析(2)∠DAB+CAE=120°,理由見解析(3)∠AOD+BOC= 或∠AOD+BOC= 或∠BOC-AOD=

【解析】

1)①先求出∠BCD,再代入∠ACB=ACD+BCD求出即可;先求出∠BCD,再代入∠DCE=BCE-BCD求出即可;

②根據(jù)∠ACB=ACD+BCD,∠DCE=BCE-BCD,利用角的加減化簡(jiǎn)即可

2)先表示∠CAB、∠DAB,利用角的加減即可求解.

3)分①ODOB上方時(shí)②OD在∠BOC內(nèi)部③OD在∠AOC內(nèi)部④ODOA下方4種情況進(jìn)行討論.

(1)①若∠DCE=60°

∵∠DCE=60°,∠ACD=BCE=90°

∴∠BCD=BCE-DCE=30°

∴∠ACB=ACD+BCD=120°

若∠ACB=140°

∵∠ACB=140°,∠ACD=BCE=90°

∴∠BCD=ACB -ACD =50°

∴∠DCE=BCE-BCD=40°

故答案為:120°;40°

②猜想:∠ACB+DCE=180°,理由是:

∵∠ACD=BCE=90°

∴∠ACB=ACD+BCD=90°+BCD,∠DCE=BCE-BCD=90°-BCD

∴∠ACB+DCE=90°+BCD+90°-BCD=180°

2)∠DAB+CAE=120°,理由是:

∵∠DAC=EAB=60°

∴∠DAB=DAC+CAB=60°+CAB,∠CAE=BAE-CAB=60°-CAB

∴∠DAB+CAE=60°+CAB+60°-CAB=120°

(3)ODOB上方時(shí),如圖:

AOD+BOC=AOB+BOD+COD-BOD=AOB +COD=

OD在∠BOC內(nèi)部,如圖:

AOD+BOC=AOB-BOD+COD+BOD=AOB +COD=

OD在∠AOC內(nèi)部,如圖:

AOD+BOC=AOB-BOD +BOD-COD =AOB -COD=

ODOA下方,如圖:

BOC-AOD= AOB-AOC-(∠COD-AOC=AOB -COD=

綜上所述:∠AOD+BOC= 或∠AOD+BOC= 或∠BOC-AOD=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某產(chǎn)品的年產(chǎn)量不超過100萬件,該產(chǎn)品的生產(chǎn)費(fèi)用y(萬元)與年產(chǎn)量x(萬件)之間的函數(shù)圖象是頂點(diǎn)在原點(diǎn)的拋物線的一部分(如圖①所示);該產(chǎn)品的銷售單價(jià)z(元/件)與年銷售量x(萬件)之間的函數(shù)圖象是如圖②所示的一條線段,生產(chǎn)出的產(chǎn)品都能在當(dāng)年銷售完,達(dá)到產(chǎn)銷平衡,所獲毛利潤為w萬元.(毛利潤=銷售額-生產(chǎn)費(fèi)用)

1)請(qǐng)直接寫出yx以及zx之間的函數(shù)關(guān)系式;

2)求wx之間的函數(shù)關(guān)系式;并求年產(chǎn)量多少萬件時(shí),所獲毛利潤最大?最大毛利潤是多少?

3)由于受資金的影響,今年投入生產(chǎn)的費(fèi)用不會(huì)超過360萬元,今年最多可獲得多少萬元的毛利潤?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)是菱形邊上的一個(gè)動(dòng)點(diǎn),點(diǎn)從點(diǎn)出發(fā),沿的方向勻速運(yùn)動(dòng)到停止,過點(diǎn)垂直直線于點(diǎn),已知,設(shè)點(diǎn)走過的路程為,點(diǎn)到直線的距離為(當(dāng)點(diǎn)與點(diǎn)或點(diǎn)重合時(shí),的值為

小騰根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對(duì)函數(shù)隨自變量的變化規(guī)律進(jìn)行了探究,下面是小騰的探究過程,請(qǐng)補(bǔ)充完整;

1)按照下表中自變量的值進(jìn)行取點(diǎn),畫圖,測(cè)量,分別得到了以下幾組對(duì)應(yīng)值;

2)在同一平面直角坐標(biāo)系中,描出補(bǔ)全后的表中各組數(shù)值所對(duì)應(yīng)的點(diǎn),并畫出函數(shù)的圖像;

3)結(jié)合函數(shù)圖像,解決問題,當(dāng)點(diǎn)到直線的距離恰為點(diǎn)走過的路程的一半時(shí),點(diǎn)P走過的路程約是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖拋物線y=ax2+bx+c經(jīng)過點(diǎn)A(﹣3,0),B(0,3),C(1,0).

(1)求此拋物線的解析式.

(2)點(diǎn)P是直線AB上方的拋物線上一動(dòng)點(diǎn),(不與點(diǎn)A、B重合),過點(diǎn)P作x軸的垂線,垂足為F,交直線AB于點(diǎn)E,作PDAB于點(diǎn)D.

動(dòng)點(diǎn)P在什么位置時(shí),PDE的周長(zhǎng)最大,求出此時(shí)P點(diǎn)的坐標(biāo);

連接PA,以AP為邊作圖示一側(cè)的正方形APMN,隨著點(diǎn)P的運(yùn)動(dòng),正方形的大小、位置也隨之改變.

當(dāng)頂點(diǎn)M或N恰好落在拋物線對(duì)稱軸上時(shí),求出對(duì)應(yīng)的P點(diǎn)的坐標(biāo).(結(jié)果保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面直角坐標(biāo)系中,矩形的邊、分別落在、軸上,點(diǎn)坐標(biāo)為,反比例函數(shù)的圖象與邊交于點(diǎn),與邊交于點(diǎn),連結(jié),將沿翻折至處,點(diǎn)恰好落在正比例函數(shù)圖象上,則的值是

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】體育課上的口令:立正,向右轉(zhuǎn),向后轉(zhuǎn),向左轉(zhuǎn)之間可以相加.連結(jié)執(zhí)行兩個(gè)口令就把這兩個(gè)口令加起來.例如:向右轉(zhuǎn)+向左轉(zhuǎn)=立正;向左轉(zhuǎn)+向后轉(zhuǎn)=向右轉(zhuǎn).如果分別用0,1,2,3分別代表立正,向右轉(zhuǎn),向后轉(zhuǎn),向左轉(zhuǎn),就可以用如圖所示的加法表來表示,在表中填了部分的數(shù)值和代表數(shù)值的字母.下列對(duì)于字母的值,說法錯(cuò)誤的是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°,點(diǎn)D,E分別是邊BC,AB上的中點(diǎn),連接DE并延長(zhǎng)至點(diǎn)F,使EF=2DF,連接CE、AF.

(1)證明:AF=CE;

(2)當(dāng)∠B=30°時(shí),試判斷四邊形ACEF的形狀并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明每天早上730從家出發(fā),到距家的學(xué)校上學(xué),一天,小明以的速度上學(xué),后小明爸爸發(fā)現(xiàn)他發(fā)現(xiàn)忘帶語文書,爸爸立即帶上語文書去追趕小明.

1)如果爸爸以的速度追小明,爸爸追上小明時(shí)距離學(xué)校多遠(yuǎn)?

2)如果爸爸剛好能在學(xué)校門口追上小明,爸爸的速度是多少?

3)爸爸以的速度追趕小明,他把書給小明后及時(shí)原路原速返回(交書耽誤的時(shí)間忽略不計(jì)),返回家的時(shí)間是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】股民小明上星期六買進(jìn)某公司股票1000股,每股20元,下表為本周內(nèi)每日該股票的漲跌情況(單位.元)

星期

每股

漲跌

4

45

1

25

5

2

1)星期四收盤時(shí),每股是多少元?

2)本周內(nèi)每股最高價(jià)多少元?最低價(jià)多少元?

3)已知小明買進(jìn)股票時(shí)付了2%的手續(xù)費(fèi),賣出時(shí)還需付成交額2%的手續(xù)費(fèi)和1%的交易稅,如果小明在星期六收盤前將全部股票賣出,它的收益情況如何?(注:2%=

查看答案和解析>>

同步練習(xí)冊(cè)答案