【題目】如圖,一次函數(shù)y=3x與反比例函數(shù)y=(k>0)的圖象交于A,B兩點(diǎn),點(diǎn)P在以C(﹣3,0)為圓心,1為半徑的⊙C上,Q是AP的中點(diǎn),已知OQ長的最大值為2,則k的值為____.
【答案】
【解析】
連接BP,根據(jù)中位線定理可得BP長的最大值為,當(dāng)BP過圓心C時,BP最長,過B作軸與D,設(shè),則 即 根據(jù)勾股定理可得列出方程求出點(diǎn)B的坐標(biāo),代入反比例函數(shù)解析式即可求解.
連接BP,由對稱性得:OA=OB,
Q是AP的中點(diǎn),
OQ的長的最大值為2,則BP長的最大值為,
如圖所示:
當(dāng)BP過圓心C時,BP最長,過B作軸與D,
CP=1,,B在直線y=3x上,
設(shè),則 即
在 中,由勾股定理得:
解得:(舍去),或,
B在反比例函數(shù)y=(k>0)的圖像上,
故答案為:
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了方便學(xué)生在上下學(xué)期間安全過馬路,南岸區(qū)政府決定在南開(融僑)中學(xué)校門口修建人行天橋(如圖1),其平面圖如圖2所示,初三(8)班的學(xué)生小劉想利用所學(xué)知識測量天橋頂棚距地面的高度.天橋入口A點(diǎn)有一臺階AB=2m,其坡角為30°,在AB上方有兩段平層BC=DE=1.5m,且BC,DE與地面平行,BC,DE上方又緊接臺階CD,EF,其長度相等且坡度均為i=4:3,頂棚距天橋距離FG=2m,且小劉從入口A點(diǎn)測得頂棚頂端G的仰角為37°,請根據(jù)以上數(shù)據(jù),幫小劉計(jì)算出頂端G點(diǎn)距地面高度為( 。m.(結(jié)果保留一位小數(shù),參考數(shù)據(jù):≈1.73,sin37°≈,cos37°≈,tan37°≈)
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】4張相同的卡片上分別寫有數(shù)字1、2、3、4,將卡片背面朝上,洗勻后從中任意抽取1張,將卡片上的數(shù)字作為被減數(shù);一只不透明的袋子中裝有標(biāo)號為1、2、3的3個小球,這些球除標(biāo)號外都相同,攪勻后從中任意摸出1個球,將摸到的球的標(biāo)號作為減數(shù).
(1)求這兩個數(shù)的差為0的概率;
(2)游戲規(guī)則規(guī)定:當(dāng)抽到的這兩個數(shù)的差為非負(fù)數(shù)時,甲獲勝;否則,乙獲勝.這樣的規(guī)則公平嗎?如果不公平,請?jiān)O(shè)計(jì)一個公平的規(guī)則,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將半徑為4,圓心角為90°的扇形BAC繞A點(diǎn)逆時針旋轉(zhuǎn)60°,點(diǎn)B、C的對應(yīng)點(diǎn)分別為點(diǎn)D、E且點(diǎn)D剛好在上,則陰影部分的面積為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綿陽某公司銷售統(tǒng)計(jì)了每個銷售員在某月的銷售額,繪制了如下折線統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖:
設(shè)銷售員的月銷售額為x(單位:萬元)。銷售部規(guī)定:當(dāng)x<16時,為“不稱職”,當(dāng) 時為“基本稱職”,當(dāng) 時為“稱職”,當(dāng) 時為“優(yōu)秀”.根據(jù)以上信息,解答下列問題:
(1)補(bǔ)全折線統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖;
(2)求所有“稱職”和“優(yōu)秀”的銷售員銷售額的中位數(shù)和眾數(shù);
(3)為了調(diào)動銷售員的積極性,銷售部決定制定一個月銷售額獎勵標(biāo)準(zhǔn),凡月銷售額達(dá)到或超過這個標(biāo)準(zhǔn)的銷售員將獲得獎勵。如果要使得所有“稱職”和“優(yōu)秀”的銷售員的一半人員能獲獎,月銷售額獎勵標(biāo)準(zhǔn)應(yīng)定為多少萬元(結(jié)果去整數(shù))?并簡述其理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著《流浪地球》的熱播,其同名科幻小說的銷量也急劇上升.為應(yīng)對這種變化,某網(wǎng)店分別花20000元和30000元先后兩次增購該小說,第二次的數(shù)量比第一次多500套,且兩次進(jìn)價相同.
(1)該科幻小說第一次購進(jìn)多少套?
(2)根據(jù)以往經(jīng)驗(yàn):當(dāng)銷售單價是25元時,每天的銷售量是250套;銷售單價每上漲1元,每天的銷售量就減少10套.網(wǎng)店要求每套書的利潤不低于10元且不高于18元.
①直接寫出網(wǎng)店銷售該科幻小說每天的銷售量y(套)與銷售單價x(元)之間的函數(shù)關(guān)系式及自變量x的取值范圍;
②網(wǎng)店決定每銷售1套該科幻小說,就捐贈a(0<a<7)元給困難職工,每天扣除捐贈后可獲得的最大利潤為1960元,求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=(x+2)2+m的圖象與y軸交于點(diǎn)C,點(diǎn)B在拋物線上,且與點(diǎn)C關(guān)于拋物線的對稱軸對稱,已知一次函數(shù)y=kx+b的圖象經(jīng)過該二次函數(shù)圖象上的點(diǎn)A(﹣1,0)及點(diǎn)B.
(1)求二次函數(shù)與一次函數(shù)的解析式;
(2)根據(jù)圖象,寫出滿足(x+2)2+m≥kx+b的x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,AE⊥BC于E,點(diǎn)F在BC延長線上,且CF=BE,連接AC,DF,
(1)求證:四邊形AEFD是矩形;
(2)若∠ACD=90°,CF=3,DF=4,求AD的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】教材呈現(xiàn):下圖是華師版八年級上冊數(shù)學(xué)教材第96頁的部分內(nèi)容.
請根據(jù)教材中的分析,結(jié)合圖①,寫出“角平分線的性質(zhì)定理”完整的證明過程.
定理應(yīng)用:
如圖②,在四邊形中,,點(diǎn)在邊上.平分,平分.
(1)求證:.
(2)若,,則的長為______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com