精英家教網 > 初中數學 > 題目詳情

【題目】某商店用1500元人民幣購進某種水果銷售,過了一周時間,又用3400元人民幣購進這種水果,所購數量是第一次購進數量的2倍,但每千克的價格比第一次購進的價格貴了2元.

1)該商店第一次購進這種水果多少千克?

2)假設該商店兩次購進的這種水果按相同的標價銷售,最后剩下的20千克按標價的五折優(yōu)惠銷售.若兩次購進的這種水果全部售完,利潤不低于900元,則每千克這種水果的標價至少是多少元?

【答案】1)該商店第一次購進這種水果100千克;(2)每千克這種水果的標價至少是20

【解析】

1)設該商店第一次購進水果x千克,則第二次購進水果2x千克,然后根據每千克的價格比第一次購進的價格貴了2元,列出方程求解即可;

2)設每千克水果的標價是y元,然后根據兩次購進水果全部售完,利潤不低于900元列出不等式,然后求解即可得出答案.

解:(1)設該商店第一次購進水果x千克,則第二次購進水果2x千克,

由題意得:,

解得:,

經檢驗,是分式方程的解,

,

答:該商店第一次購進這種水果100千克;

2)由(1)得該商店第二次購進這種水果的數量為:千克;

設每千克水果的標價是y元,由題意得:

,

解得:,

答:每千克這種水果的標價至少是20元.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】已知,點P是直角三角形ABC斜邊AB上一動點(不與A,B重合),分別過A,B向直線CP作垂線,垂足分別為E,FQ為斜邊AB的中點.

1)如圖1,當點P與點Q重合時,AEBF的位置關系是 ,QEQF的數量關系式 ;

2)如圖2,當點P在線段AB上不與點Q重合時,試判斷QEQF的數量關系,并給予證明;

3)如圖3,當點P在線段BA(或AB)的延長線上時,此時(2)中的結論是否成立?請畫出圖形并給予證明.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】下列事件中,最適合使用全面調查的方式收集數據的是( )

A.了解某地區(qū)人民對修建高速路的意見

B.了解同批次燈泡的使用壽命

C.了解我校七年級某班同學的課外閱讀時間

D.了解昆明市中學生對社會主義核心價值觀的知曉率

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】晨光文具店有一套體育用品:1個籃球,1個排球和1個足球,一套售價300元,也可以單獨出售,小攀同學共有50元、20元、10元三種面額鈔票各若干張.如果單獨出售,每個球只能用到同一種面額的鈔票去購買.若小面額的錢的張數恰等于另兩種面額錢張數的乘積,那么所有可能中單獨購買三個球中所用到的錢最少的一個球是___________元.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某餐廳中,一張桌子可坐6人,有如圖所示的兩種擺放方式:

(1)當有n張桌子時,兩種擺放方式各能坐多少人?

(2)一天中午餐廳要接待98位顧客共同就餐,但餐廳只有25張這樣的餐桌.若你是這個餐廳的經理,你打算選擇哪種方式來擺放餐桌?為什么?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】一項工程,甲、乙兩公司合做,12天可以完成,共需付工費102000元;如果甲、乙兩公司單獨完成此項公程,乙公司所用時間是甲公司的1.5倍,乙公司每天的施工費比甲公司每天的施工費少1500元。

1)甲、乙公司單獨完成此項工程,各需多少天?

2)若讓一個公司單獨完成這項工程,哪個公司施工費較少?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖所示,張三打算在院落種上蔬菜.已知院落為東西長為32米,南北寬為20米的長方形,為了行走方便,要修筑同樣寬度的三條小路,東西兩條,南北一條,余下的部分種上各類蔬菜.若每條小路的寬均為1米.

1)求蔬菜的種植面積;

2)若每平方米的每季蔬菜的值為3元,成本為1元,這個院落每季的產值是多少?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖:已知點A、B是反比例函數y=﹣上在第二象限內的分支上的兩個點,點C(0,3),且△ABC滿足AC=BC,∠ACB=90°,則線段AB的長為__

【答案】

【解析】過點AADy軸于點D,過點BBEy軸于點E過點AAFBE軸于點F,如圖所示.

∵∠ACB=90°,

∴∠ACD+BCE=90°,

又∵ADy軸,BEy軸,

∴∠ACD+CAD=90°,BCE+CBE=90°,

∴∠ACD=CBE,BCE=CAD

ACDCBE中,由,

ACDCBE(ASA).

設點B的坐標為(m,﹣)(m<0),則E(0,﹣),點D(0,3﹣m),點A(﹣﹣3,3﹣m),

∵點A(﹣﹣3,3﹣m)在反比例函數y=﹣上,

,解得:m=3,m=2(舍去).

∴點A的坐標為(﹣1,6),B的坐標為(﹣3,2),F的坐標為(﹣1,2),

∴BF=2,AF=4,

故答案為:2

點睛

過點AADy軸于點D,過點BBEy軸于點E,過點AAFBE軸于點F,根據角的計算得出ACD=CBE,BCE=CAD,由此證出ACDCBE;再設點B的坐標為(m,﹣),由三角形全等找出點A的坐標,將點A的坐標代入到反比例函數解析式中求出m的值,將m的值代入A,B點坐標即可得出點A,B的坐標,并結合點A,B的坐標求出點F的坐標,利用勾股定理即可得出結論.

型】填空
束】
18

【題目】二次函數y=x2+2m+1x+m2﹣1)有最小值﹣2,則m=________

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】一張方桌由1個桌面,4條桌腿組成,如果1m3木料可以做方桌的桌面50個或做桌腿300條,現有25m3木料,那么用多少m3的木料做桌面,多少m3的木料做桌腿,做出的桌面與桌腿,恰好能配成方桌?能配成多少張方桌.

查看答案和解析>>

同步練習冊答案