(2010•盧灣區(qū)一模)如圖,有一所正方形的學校,北門(點A)和西門(點B)各開在北、西面圍墻的正中間.在北門的正北方30米處(點C)有一顆大榕樹.如果一個學生從西門出來,朝正西方走750米(點D),恰好見到學校北面的大榕樹,那么這所學校占地    平方米.
【答案】分析:延長CA、DB相交于E,則由于CA⊥FG,DE∥FG可得△CDE是直角三角形,再根據(jù)FB⊥DE可得,△DFB∽△DCE,再根據(jù)相似三角形的相似比解答即可.
解答:解:延長CA、DB相交于E,
∵CA⊥FG,DE∥FG可得△CDE是直角三角形,
∵四邊形FGHL是正方形,
∴FB∥CE,△DFB∽△DCE,
設AE=x,則AE=FB=BE=FL=x,
∵AC=30m,DB=750m,
=
=,
解得,x=150m,
∴FL=150×2=300m.
∴S□FGHL=FL2=3002=90000m2
點評:此題考查的是相似三角形在實際生活中的應用,解答此題的關鍵是根據(jù)題意構(gòu)造出相似三角形,再利用相似三角形的相似比解答.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2010年上海市盧灣區(qū)中考數(shù)學一模試卷(解析版) 題型:解答題

(2010•盧灣區(qū)一模)已知正方形ABCD中,AB=5,E是直線BC上的一點,連接AE,過點E作EF⊥AE,交直線CD于點F.
(1)當E點在BC邊上運動時,設線段BE的長為x,線段CF的長為y,
①求y關于x的函數(shù)解析式及其定義域;
②根據(jù)①中所得y關于x的函數(shù)圖象,求當BE的長為何值時,線段CF最長,并求此時CF的長;
(2)當CF的長為時,求tan∠EAF的值.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年上海市盧灣區(qū)中考數(shù)學一模試卷(解析版) 題型:解答題

(2010•盧灣區(qū)一模)已知拋物線與x軸交于A(-3,0),B(1,0)兩點,與y軸交于點C(0,-3),拋物線頂點為D,連接AD,AC,CD.
(1)求該拋物線的解析式;
(2)△ACD與△COB是否相似?如果相似,請給以證明;如果不相似,請說明理由;
(3)拋物線的對稱軸與線段AC交于點E,求△CED的面積.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年上海市盧灣區(qū)中考數(shù)學一模試卷(解析版) 題型:填空題

(2010•盧灣區(qū)一模)如果將拋物線y=-2x2+8向右平移a個單位后,恰好過點(3,6),那么a的值為   

查看答案和解析>>

科目:初中數(shù)學 來源:2010年上海市盧灣區(qū)中考數(shù)學一模試卷(解析版) 題型:填空題

(2010•盧灣區(qū)一模)若某二次函數(shù)圖象的頂點在原點,且經(jīng)過點(2,1),則此二次函數(shù)的解析式是   

查看答案和解析>>

科目:初中數(shù)學 來源:2010年上海市盧灣區(qū)中考數(shù)學一模試卷(解析版) 題型:填空題

(2010•盧灣區(qū)一模)拋物線y=2(x-1)2+5的頂點坐標是   

查看答案和解析>>

同步練習冊答案