下列陰影三角形分別在小正方形組成的網(wǎng)格中,則與左圖中的三角形相似的是(    )
D

試題分析:根據(jù)相似三角形判斷條件,兩條對(duì)應(yīng)邊成比例,且其夾角相等,那么兩三角形相似,不妨設(shè)小正方形的邊長為1,原圖有一直角切其兩邊長分別為,2其比值為1:2,而A,B,C均不滿足,只有D滿足,所以D為正選。
點(diǎn)評(píng):熟知相似三角形的判定,一般有三種;一兩個(gè)對(duì)應(yīng)角相等,二兩對(duì)應(yīng)邊城比例且其夾角相等,三,三邊成比列。本題屬于第一種,結(jié)合圖形易求之,屬于基礎(chǔ)題,難度不大。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在△ABC中,AB=AC=2,∠BAC=20°.動(dòng)點(diǎn)P,Q分別在直線BC上運(yùn)動(dòng),且始終保持∠PAQ=100°.設(shè)BP=x,CQ=y,則y與x之間的函數(shù)關(guān)系用圖象大致可以表示為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:點(diǎn)P為正方形ABCD內(nèi)部一點(diǎn),且∠BPC=90°,過點(diǎn)P的直線分別交邊AB、邊CD于點(diǎn)E、點(diǎn)F.
(1)如圖1,當(dāng)PC=PB時(shí),則SPBE、SPCF SBPC之間的數(shù)量關(guān)系為 _________ 
(2)如圖2,當(dāng)PC=2PB時(shí),求證:16SPBE+SPCF=4SBPG;
(3)在(2)的條件下,Q為AD邊上一點(diǎn),且∠PQF=90°,連接BD,BD交QF于點(diǎn)N,若Sbpc=80,BE=6.求線段DN的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,O是坐標(biāo)原點(diǎn),點(diǎn)A的坐標(biāo)是(﹣4,0),點(diǎn)B的坐標(biāo)是(0,b)(b>0).P是直線AB上的一個(gè)動(dòng)點(diǎn),作PC⊥x軸,垂足為C.記點(diǎn)P關(guān)于y軸的對(duì)稱點(diǎn)為P´(點(diǎn)P´不在y軸上),連接PP´,P´A,P´C.設(shè)點(diǎn)P的橫坐標(biāo)為a.
(1)當(dāng)b=3時(shí),
①求直線AB的解析式;
②若點(diǎn)P′的坐標(biāo)是(﹣1,m),求m的值;
(2)若點(diǎn)P在第一象限,記直線AB與P´C的交點(diǎn)為D.當(dāng)P´D:DC=1:3時(shí),求a的值;
(3)是否同時(shí)存在a,b,使△P´CA為等腰直角三角形?若存在,請(qǐng)求出所有滿足要求的a,b的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在矩形ABCD中,AB=6,BC=8,沿直線MN對(duì)折,使A、C重合,直線MN交AC于O.
(1)求證:△COM∽△CBA;    
(2)求線段OM的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在△ABC中,∠C=90°,AC=8,BC=6。P是AB邊上的一個(gè)動(dòng)點(diǎn)(異于A、B兩點(diǎn)),過點(diǎn)P分別作AC、BC邊的垂線,垂足為M、N設(shè)AP=x。

(1)在△ABC中,AB=               ;
(2)當(dāng)x=      時(shí),矩形PMCN的周長是14;
(3)是否存在x的值,使得△PAM的面積、△PBN的面積與矩形PMCN的面積同時(shí)相等?請(qǐng)說出你的判斷,并加以說明。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,△ABC中,DE∥BC,AD=5,BD=10,AE=3,則CE的值為( 。
A.9B.6C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在,.點(diǎn)是線段邊上的一動(dòng)點(diǎn)(不含兩端點(diǎn)),連結(jié),作,交線段于點(diǎn)
  
(1)求證:
(2)設(shè),,請(qǐng)寫之間的函數(shù)關(guān)系式,并求的最小值。
(3)點(diǎn)在運(yùn)動(dòng)的過程中,能否構(gòu)成等腰三角形?若能,求出的長;若不能,請(qǐng)說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,四邊形ABCD四邊的中點(diǎn)分別為E,F(xiàn),G,H,對(duì)角線AC與BD相交于點(diǎn)O,若四邊形EFGH的面積是3,則四邊形ABCD的面積是( 。
A.3B.6C.9D.12

查看答案和解析>>

同步練習(xí)冊(cè)答案