【題目】如圖,的直徑,點(diǎn)D上,的延長(zhǎng)線與過點(diǎn)B的切線交于點(diǎn)C,E為線段上的點(diǎn),過點(diǎn)E的弦于點(diǎn)H

1)求證:

2)已知,,且,求的長(zhǎng).

【答案】1)見解析;(2-2

【解析】

1)連接BD,根據(jù)圓周角定理得到∠ADB=90°,根據(jù)切線的性質(zhì)得到∠ABC=90°,得到∠C=ABD,根據(jù)圓周角定理即可得到結(jié)論;

2)根據(jù)相似三角形的判定和性質(zhì)以及勾股定理即可得到結(jié)論.

解:(1)證明:如圖1,連接BD
AB是⊙O的直徑,
∴∠ADB=90°,
∴∠DAB+DBA=90°
BC是⊙O的切線,
∴∠ABC=90°,
∴∠C+CAB=90°
∴∠C=ABD,
∵∠AGD=ABD,
∴∠AGD=C;

2)解:∵∠BDC=ABC=90°,∠C=C
∴△ABC∽△BDC,

,
AC=9,
AB=
CE=2AE,
AE=3,CE=6,
FHAB,
FHBC,
∴△AHE∽△ABC
,

AH=,EH=2
如圖2,連接AFBF,
AB是⊙O的直徑,
∴∠AFB=90°,
∴∠AFH+BFH=AFH+FAH=90°,
∴∠FAH=BFH
∴△AFH∽△FBH,
,
,
FH=
EF=-2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,面積為S的菱形ABCD中,點(diǎn)O為對(duì)角線的交點(diǎn),點(diǎn)E是線段BC單位中點(diǎn),過點(diǎn)EEFBDFEGACG,則四邊形EFOG的面積為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某單位食堂為全體名職工提供了四種套餐,為了解職工對(duì)這四種套餐的喜好情況,單位隨機(jī)抽取名職工進(jìn)行你最喜歡哪一種套餐(必選且只選一種)問卷調(diào)查,根據(jù)調(diào)查結(jié)果繪制了條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖,部分信息如下:

在抽取的人中最喜歡套餐的人數(shù)為 ,扇形統(tǒng)計(jì)圖中對(duì)應(yīng)扇形的圓心角的大小為

依據(jù)本次調(diào)查的結(jié)果,估計(jì)全體名職工中最喜歡套餐的人數(shù);

現(xiàn)從甲、乙、丙、丁四名職工中任選兩人擔(dān)任食品安全監(jiān)督員,求甲被選到的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校教職工為慶!敖▏(guó)周年”開展學(xué)習(xí)強(qiáng)國(guó)知識(shí)競(jìng)賽,本次知識(shí)競(jìng)賽分為甲、乙、丙三組進(jìn)行.下面兩幅統(tǒng)計(jì)圖反映了教師參加學(xué)習(xí)強(qiáng)國(guó)知識(shí)競(jìng)賽的報(bào)名情況,請(qǐng)你根據(jù)圖中的信息回答下列問題:

(1)該校教師報(bào)名參加本次學(xué)習(xí)強(qiáng)國(guó)知識(shí)競(jìng)賽的總?cè)藬?shù)為___________人,并補(bǔ)全條形統(tǒng)計(jì)圖;

(2)該校教師報(bào)名參加丙組的人數(shù)所占圓心角度數(shù)是__________;

(3)根據(jù)實(shí)際情況,需從甲組抽調(diào)部分教師到丙組,使丙組人數(shù)是甲組人數(shù)的倍,應(yīng)從甲組抽調(diào)多少名教師到丙組?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形中,分別為邊,的中點(diǎn),,分別交于點(diǎn)M,N.已知,,則的長(zhǎng)為_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD是平行四邊形,AD=BD,過點(diǎn)CCEBD,交AD的延長(zhǎng)線于點(diǎn)E

1)求證:四邊形BDEC是菱形;

2)連接BE,若AB=2,AD=4,求BE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,At,0),Bt+4,0),線段AB的中點(diǎn)為C,若平面內(nèi)存在一點(diǎn)P使得∠APC或者∠BPC為直角(點(diǎn)P不與A,BC重合),則稱P為線段AB的直角點(diǎn).

1)當(dāng)t=0時(shí),

①在點(diǎn)P10),P2,),P3,﹣)中,線段AB的直角點(diǎn)是   

②直線y=x+b上存在四個(gè)線段AB的直角點(diǎn),直接寫出b取值范圍;

2)直線y=x+1x,y軸交于點(diǎn)MN.若線段MN上只存在兩個(gè)線段AB的直角點(diǎn),直接寫出t取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知的半徑為,的半徑為,以為圓心,以的長(zhǎng)為半徑畫弧,再以線段的中點(diǎn)P為圓心,以的長(zhǎng)為半徑畫弧,兩弧交于點(diǎn)A,連接,于點(diǎn)B,過點(diǎn)B的平行線于點(diǎn)C

1)求證:的切線;

2)若,,,求陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】王老板經(jīng)營(yíng)甲、乙兩個(gè)服裝店鋪,每個(gè)店鋪各在同一段時(shí)間內(nèi)都能售出AB兩種款式的服裝合計(jì)30件且甲店售1A款和2B款可獲得110元,售2A1B可獲得100元,乙店每售出一件A款獲得27元,1B款獲利36元,

1)問在甲店售出1A1B分別獲利多少元?

2)某日王老板進(jìn)了A款式的服裝35件,B款式的服裝25件,如果分配給甲店的A款式的服裝x件,①求王老板獲取的利潤(rùn)y(元)與x(件)之間的函數(shù)關(guān)系式,并寫出x的取值范圍;

②由于甲、乙兩個(gè)店鋪所處的地段原因,王老板想在保證乙店利潤(rùn)不小于950元的前提下,使得自己獲取的利潤(rùn)最大,請(qǐng)你幫王老板設(shè)計(jì)一種最佳分配方案,并求最大的總利潤(rùn)是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案