分析 (1)由垂徑定理知,垂直于弦的直徑是弦的中垂線,故作AC,BC的中垂線交于點O,則點O是弧ACB所在圓的圓心;
(2)在Rt△OAD中,由勾股定理可求得半徑OA的長,由圓的面積公式進行計算即可.
解答 解:(1)作弦AC的垂直平分線與弦AB的垂直平分線交于O點,以O為圓心OA長為半徑作圓O就是此殘片所在的圓,如圖.
(2)連接OA,設OA=x,AD=12cm,OD=(x-8)cm,
則根據(jù)勾股定理列方程:
x2=122+(x-8)2,
解得:x=13.
即:圓的半徑為13cm.
所以圓的面積為:π×132=169π(cm2).
點評 本題考查的是垂徑定理和勾股定理的應用,垂徑定理和勾股定理相結(jié)合,構(gòu)造直角三角形,可解決計算弦長、半徑、弦心距等問題.
科目:初中數(shù)學 來源: 題型:選擇題
A. | 2 | B. | 3 | C. | 4 | D. | 5 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
A. | 拋擲一枚硬幣,落地時正面朝上 | B. | 任意打開數(shù)學教科書,正好是58頁 | ||
C. | 兩個負數(shù)相乘,結(jié)果為正數(shù) | D. | 兩個無理數(shù)相加,結(jié)果仍是無理數(shù) |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
A. | 1個 | B. | 2個 | C. | 3個 | D. | 4個 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com