【題目】如圖,拋物線y=ax2+bx+2x軸相交于A(﹣1,0),B(4,0)兩點,與y軸相交于點C.

(1)求拋物線的解析式;

(2)將△ABCAB中點M旋轉180°,得到△BAD.

①求點D的坐標;

②判斷四邊形ADBC的形狀,并說明理由;

(3)在該拋物線對稱軸上是否存在點P,使△BMP與△BAD相似?若存在,請求出所有滿足條件的P點的坐標;若不存在,請說明理由.

【答案】(1)y=﹣x2+x+2;(2)①點D的坐標為(3,﹣2),②四邊形ADBC為矩形,理由見解析;(3)在該拋物線對稱軸上存在點P,使△BMP與△BAD相似,點P的坐標為(,)或(,﹣)或(,5)或(,﹣5).

【解析】

(1)由點A、B的坐標,利用待定系數(shù)法即可求出拋物線的解析式;

(2)利用二次函數(shù)圖象上點的坐標特征可求出點C的坐標.①過點DDEx軸于點E,根據(jù)旋轉的性質可得出OA=EB、OC=ED,結合點A、B、O、C的坐標,即可找出點D的坐標;②由點A、B、C的坐標可得出OA、OC、OB的長度,利用勾股定理可求出AC、BC的長,由AC2+BC2=25=AB2可得出∠ACB=90°,再利用旋轉的性質即可找出四邊形ADBC為矩形;

(3)假設存在,設點P的坐標為(,m),由點MAB的中點可得出∠BPD=ADB=90°,分PMB∽△BDABMP∽△BDA兩種情況考慮,利用相似三角形的性質可得出關于m的含絕對值的一元一次方程,解之即可得出結論.

(1)將A(﹣1,0)、B(4,0)代入y=ax2+bx+2,得:,解得:,

∴拋物線的解析式為y=﹣x2+x+2.

(2)當x=0時,y=﹣x2+x+2=2,

∴點C的坐標為(0,2).

①過點DDEx軸于點E,如圖1所示.

∵將ABCAB中點M旋轉180°,得到BAD,

OA=EB,OC=ED.

A(﹣1,0),O(0,0),C(0,2),B(4,0),

BE=1,DE=2,OE=3,

∴點D的坐標為(3,﹣2).

②四邊形ADBC為矩形,理由如下:

A(﹣1,0),B(4,0),C(0,2),

OA=1,OC=2,OB=4,AB=5,

AC=,BC=

AC2+BC2=25=AB2

∴∠ACB=90°.

∵將ABCAB中點M旋轉180°,得到BAD,

∴∠ABC=BAD,BC=AD,

BCADBC=AD,

∴四邊形ADBC為平行四邊形.

又∵∠ACB=90°,

∴四邊形ADBC為矩形.

(3)假設存在,設點P的坐標為(,m).

∵點MAB的中點,

∴∠BPD=ADB=90°,

∴有兩種情況(如圖2所示).

①當PMB∽△BDA時,有,即,

解得:m=±,

∴點P的坐標為(,)或(,﹣);

②當BMP∽△BDA時,有,即,

解得:m=±5,

∴點P的坐標為(,5)或(,﹣5).

綜上所述:在該拋物線對稱軸上存在點P,使BMPBAD相似,點P的坐標為(,)或(,﹣)或(,5)或(,﹣5).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,以原點O為圓心的圓過點A,0),直線y=kx-2k+3O交于BC兩點,則弦BC的長的最小值為_______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB為⊙O的直徑,OD⊥弦BC于點D,交⊙O于點E,AEBC交于點F,點HOD延長線上一點,且∠OHB=AEC.

(1)求證:BH是⊙O的切線;

(2)求證:CE2=EF·EA;

(3)若⊙O的半徑為5,sinC=,求BF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將一張邊長為8的正方形紙片OABC放在直角坐標系中,使得OAy軸重合,OCx軸重合,點P為正方形AB邊上的一點(不與點A、點B重合).將正方形紙片折疊,使點O落在P處,點C落在G處,PGBCH,折痕為EF.連接OPOH

初步探究

1)當AP=4

直接寫出點E的坐標    ;

求直線EF的函數(shù)表達式.

深入探究

2)當點P在邊AB上移動時,∠APO與∠OPH的度數(shù)總是相等,請說明理由.

拓展應用

3)當點P在邊AB上移動時,△PBH的周長是否發(fā)生變化?并證明你的結論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,點G在邊DC的延長線上,AG交邊BC于點E,交對角線BD于點F.

(1)求證:AF2=EFFG;

(2)如果EF=,F(xiàn)G=,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠ACB=2A,過點C的直線能將△ABC分成兩個等腰三角形,則∠A的度數(shù)為____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(閱讀材科)小明同學發(fā)現(xiàn)這樣一個規(guī)律:兩個頂角相等的等腰三角形,

如果具有公共的項角的頂點,并把它們的底角頂點連接起來則形成一組全等的三角形,小明把具有這個規(guī)律的圖形稱為“手拉手”圖形.如圖1,在“手拉手”圖形中,小明發(fā)現(xiàn)若∠BAC=DAE,AB=AC,AD=AE,則△ABD≌△ACE

(材料理解)(1)在圖1中證明小明的發(fā)現(xiàn).

(深入探究)(2)如圖2,△ABC和△AED是等邊三角形,連接BD,EC交于點O,連接AO,下列結論:BD=ECBOC=60°;AOE=60°;EO=CO,其中正確的有    (將所有正確的序號填在橫線上)

(延伸應用)(3)如圖3,AB=BC,∠ABC=BDC=60°,試探究∠A與∠C的數(shù)量關系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,為等腰三角形,,點在線段上(不與重合),以為腰長作等腰直角,.

1)求證:;

2)連接,若,求的值.

3)如圖2,過的延長線于點,過點作,連接,當點在線段上運動時(不與重合),式子的值會變化嗎?若不變,求出該值;若變化,請說明理由..

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】朗讀者自開播以來,以其厚重的文化底蘊和感人的人文情懷,感動了數(shù)以億計的觀眾,岳池縣某中學開展朗讀比賽活動,九年級、班根據(jù)初賽成績,各選出5名選手參加復賽,兩個班各選出的5名選手的復賽成績滿分為100如圖所示.

平均數(shù)

中位數(shù)

眾數(shù)

85

85

80

根據(jù)圖示填寫表格;

結合兩班復賽成績的平均數(shù)和中位數(shù),分析哪個班級的復賽成績較好;

如果規(guī)定成績較穩(wěn)定班級勝出,你認為哪個班級能勝出?說明理由.

查看答案和解析>>

同步練習冊答案