【題目】規(guī)定:二元一次方程有無數(shù)組解,每組解記為,為亮點,將這些亮點連接得到一條直線,稱這條直線是亮點的隱線,答下列問題:

(1) 已知,則是隱線的亮點的是 ;

(2) 設(shè)是隱線的兩個亮點,求方程的最小的正整數(shù)解;

(3)已知是實數(shù), ,是隱線的一個亮點,求隱線中的最大值和最小值的和.

【答案】1B;(2的最小整數(shù)解為;(3)隱線中的最大值和最小值的和為

【解析】

1)將A,B,C三點坐標(biāo)代入方程,方程成立的點即為所求,

2)將P,Q代入方程,組成方程組求解即可,

3)將P代入隱線方程,組成方程組,求解方程組的解,再由即可求解.

解:(1)將A,B,C三點坐標(biāo)代入方程,只有B點符合,

∴隱線的亮點的是B.

2)將代入隱線方程

得:

解得

代入方程得:

的最小整數(shù)解為

3)由題意可得

的最大值為,最小值為

隱線中的最大值和最小值的和為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著氣溫的升高,空調(diào)的需求量大增.某家電超市對每臺進(jìn)價分別為2000元、1700元的、兩種型號的空調(diào),近兩周的銷售情況統(tǒng)計如下:

銷售時段

銷售量

銷售收入

型號

型號

第一周

6

7

31000

第二周

8

11

45000

1)求、兩種型號的空調(diào)的銷售價;

2)若該家電超市準(zhǔn)備用不多于54000元的資金,采購這兩種型號的空調(diào)30臺,求種型號的空調(diào)最多能采購多少臺?

3)在(2)的條件下,該家電超市售完這30臺空調(diào)能否實現(xiàn)利潤不低于15800元的目標(biāo)?若能,請給出采購方案.若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,△ABC中,ABAC,∠A36°

1)作AB邊的垂直平分線,垂足為M,交ACN,連結(jié)BN.(不寫作法,保留作圖痕跡)

2)①直接寫出∠ABN的度數(shù)為   

②若BC12,直接寫出BN的長為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某地計劃用120180天(含120180天)的時間建設(shè)一項水利工程,工程需要運送的土石方總量為360萬米3

1)寫出運輸公司完成任務(wù)所需的時間y(單位:天)與平均每天的工作量x(單位:萬米3)之間的函數(shù)關(guān)系式.并給出自變量x的取值范圍;

2)由于工程進(jìn)度的需要,實際平均每天運送土石方比原計劃多20%,工期比原計劃減少了24天,原計劃和實際平均每天運送土石方各是多少萬米3?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】重慶出租車計費的方法如圖所示,x(km)表示行駛里程,y()表示車費,請根據(jù)圖象解答下列問題:

(1)該地出租車起步價是_____元;

(2)當(dāng)x2時,求yx之間的關(guān)系式;

(3)若某乘客一次乘出租車的里程為18km,則這位乘客需付出租車車費多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是一個長方體紙盒的平面展開圖,已知紙盒中相對兩個面上的數(shù)互為相反數(shù).

1)填空:a   ,b   ,c   ;

2)先化簡,再求值:5a2b[2a2b32abca2b]+4abc

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】蝸牛從某點開始沿一條東西方向的直線爬行,規(guī)定以出發(fā)點為原點,向東爬行的路程記為正數(shù),向西爬行的路程記為負(fù)數(shù),則蝸牛爬過的各段路程依次為+5,-3,+10,-8,-6,+12,-10.(單位:厘米)

1)請判斷蝸牛最后是否回到出發(fā)點?

2)蝸牛離開出發(fā)點0最遠(yuǎn)時是多少厘米?

3)在爬行過程中,若蝸牛每爬1厘米就獎勵一粒芝麻,則蝸牛一共得到多少粒芝麻?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,階梯圖的每個臺階上都標(biāo)著一個數(shù),從下到上的第1個至第4個臺階上依次標(biāo)著﹣5,﹣2,1,9,且任意相鄰四個臺階上數(shù)的和都相等.

嘗試 (1)求前4個臺階上數(shù)的和是多少?

(2)求第5個臺階上的數(shù)x是多少?

應(yīng)用 求從下到上前31個臺階上數(shù)的和.

發(fā)現(xiàn) 試用含k(k為正整數(shù))的式子表示出數(shù)“1”所在的臺階數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校隨機(jī)選取40名學(xué)生進(jìn)行軍運會知識考查,對考查成績進(jìn)行統(tǒng)計(成績均為整數(shù)),并依據(jù)統(tǒng)計數(shù)據(jù)繪制了如下統(tǒng)計圖表.解答下列問題:

組別

分?jǐn)?shù)段/

頻數(shù)

頻率

1

50.5~60.5

2

a

2

60.5~70.5

6

0.15

3

70.5~80.5

b

c

4

80.5~90.5

12

0.30

5

90.5~100.5

6

0.15

合計

40

1.00

(1) 表中a______;b______;c____;

(2) 請補(bǔ)全頻數(shù)分布直方圖;

(3) 已知該學(xué)校共有學(xué)生1280人,若考查成績80分以上(不含80分)為優(yōu)秀,試估計該學(xué)校學(xué)生軍運會知識考查成績達(dá)到優(yōu)秀的人數(shù).

查看答案和解析>>

同步練習(xí)冊答案